
The SMT-LIBv2 Language and Tools: A Tutorial

David R. Cok
GrammaTech, Inc.

Version 1.2.1
November 23, 2013

The most recent version is available at
http://www.grammatech.com/resource/smt/SMTLIBTutorial.pdf.

Copyright (c) 2010-2011 by David R. Cok. Permission is granted to make and
distribute copies of this document for educational or research purposes, pro-
vided that the copyright notice and permission notice are preserved and ac-
knowledgment is given in publications. Modified versions of the document
may not be made. Incorporating this document within a larger collection, or
distributing it for commercial purposes, or including it as part or all of a prod-
uct for sale is allowed only by separate written permission from the author.

http://www.grammatech.com/resource/smt/SMTLIBTutorial.pdf

Contents

Preface 4

Version History 4

Note 4

1 Introduction 5
1.1 The SMT-LIB endeavor . 5
1.2 Purpose and Content . 6
1.3 Mechanics . 7

2 Quick Start 9

3 The SMT-LIB Language (v2) 14
3.1 Some logical concepts . 14

3.1.1 Satisfiability and Validity . 14
3.1.2 Quantified formulas and SMT solvers 15
3.1.3 Many-Sorted Logic . 15
3.1.4 Formulas and terms . 16
3.1.5 Abstract and concrete syntax . 16

3.2 Character set . 17
3.3 S-expressions . 18
3.4 Tokens . 18
3.5 Sort and Function Declarations . 22
3.6 Attributes . 23
3.7 Expressions . 23
3.8 Namespaces and Scopes . 29
3.9 Commands and command output . 31

3.9.1 Initialization: the set-logic command 34
3.9.2 Termination: the exit command . 34
3.9.3 Defining new sorts: declare-sort and define-sort 35
3.9.4 Defining new function symbols and constants: declare-fun and define-fun 36
3.9.5 Asserting logical statements: the assert command 38

1

3.9.6 Checking satisfiability: the check-sat command 38
3.9.7 sat operations: get-value and get-assignment 39
3.9.8 unsat operations: get-proof and get-unsat-core 42
3.9.9 Adding scope: the push and pop commands 45
3.9.10 Remembering what you have done: the get-assertions command . . . 47
3.9.11 Options . 48
3.9.12 Solver information . 52
3.9.13 The set-info command . 55

4 Logics and Theories 56
4.1 Theories . 57

4.1.1 Definition of a Theory . 57
4.1.2 Core theory . 57
4.1.3 Ints theory . 58
4.1.4 Reals theory . 58
4.1.5 Reals_Ints theory . 59
4.1.6 ArraysEx theory . 59
4.1.7 Fixed_Size_BitVectors theory . 59

4.2 Logics . 60
4.2.1 Definition of a logic . 60
4.2.2 Boolean logics . 61
4.2.3 Logics with arithmetic . 61
4.2.4 Logics for difference arithmetic . 62
4.2.5 Logics with Bit-Vectors and Arrays . 63

5 SMT solvers 64

6 Tools 66
6.1 Tools associated with this tutorial . 66

6.1.1 The SMT-LIB validator . 66
6.1.2 The SMT-LIB adapters . 67
6.1.3 The SMT-LIB Java API . 67
6.1.4 The SMT Eclipse plug-in . 67
6.1.5 SMT validation test suite . 68

6.2 Tools from other providers . 68

2

List of Tables

3.1 Token types defined in SMT-LIB . 19
3.2 Invalid tokens . 22
3.3 SMT-LIB commands . 32

3

Preface

A tutorial is only as useful as its subject. This tutorial owes its debt to two groups that have
established SMT solvers as they are today.

The first is the distributed group of SMT solver implementors. These researchers have pushed
the capabilities of SMT solvers, making them a significantly useful tool for model checking and
software verification, and making great strides in solver performance over recent years. Without
good SMT solvers we would have no need for a standard language, nor a tutorial.

The second and more specific acknowledgment is to Cesare Tinelli, Clark Barett and Aaron
Stump, the authors of the SMT-LIB version 2 specification. In addition, Tinelli and Silvio Ranise
pioneered the SMT-LIB language, and Barrett and Stump, with Leonardo DeMoura, initiated the
SMT-COMP solver competition.

Version History

2011-02-13 Version 1.1 Reported typos corrected
2011-01-24 Version 1.0 First round comments incorporated
2010-12-25 Version 0.2.draft Updated to 12/21/2010 version of the standard
2010-12-19 Version 0.1.draft First draft for comment

Note

This document almost certainly contains errors. It may anticipate changes that are not yet re-
flected in the SMT-LIB standard; it may anticipate changes that do not become adopted; it may
not yet contain changes that have been incorporated into the standard; and it may have misinter-
preted the standard. If you notice errors, please bring them to the author’s attention and they will
be corrected in a future edition.

4

Chapter 1

Introduction

1.1 The SMT-LIB endeavor

This tutorial builds on two significant developments in automated reasoning over recent years.
The first development is the considerable advance in SMT solvers. These solvers (and their
siblings, SAT solvers) are essential to model checking and software verification. Some such
solver is embedded as a background validity checker in most verification systems.

At the 2010 SMT workshop, 10 different provers competed to demonstrate capability and perfor-
mance, with an additional 8 other groups competing in 2008 and 2009. That competition, SMT-
COMP, is a direct contributor to the recent improvements in SMT solver performance. A uni-
formly available set of benchmark problems provided a measure of solver capability and an objec-
tive means of comparing solvers. As a result, solver performance has increased considerably[1][4]
over the last several years.

The second key development is the SMT-LIB language itself. Integral to the SMT competition
is having a language common across solvers in which to express benchmark problems. That
is the task of the SMT-LIB language. The language was first proposed in 2003[5] as the input
language for the SMT benchmark problems. However, the language was subsequently revised
to meet additional needs. In particular, an important application of SMT solvers is as a backend
constraint solver for software verification. In this application, a solver receives input from another
tool and the driver tool needs capabilities such as asserting and retracting logical expressions or
exploring the satisfying assignments produced by the solver. Those requirements led to SMT-
LIB version 2, which was announced in 2010[2]. This tutorial describes the December 21, 2010,
edition of that standard.

The SMT-LIB standard has the goal of advancing the theory and practice of SMT solvers by
providing a common language and set of benchmarks against which to test and compare solvers.

5

This tutorial is created in support of that goal, but with the additional intent of encouraging wider
use of SMT solvers, in application areas in which SMT solvers may currently be unfamiliar.

1.2 Purpose and Content

This tutorial is intended for two audiences. The primary audience is individuals somewhat new
to SMT solvers, or at least to the particular input and output format that is SMT-LIB v.2. This
tutorial will provide these readers

• a very brief introduction to some of the key concepts of logic and automated theorem
proving that are needed to use SMT solvers,

• information about the context of SMT solvers, SMT-LIB and the recent significant release
(v.2),

• examples and description of how SMT-LIB is used to interact with SMT solvers,

• pointers to currently available SMT solvers,

• and descriptions of some tools and test suites that may be useful to the reader.

For this audience, the tutorial intends to provide sufficient information for new users to experi-
ment with SMT solvers using SMT-LIB and for implementors of applications using SMT solvers
to effectively use SMT-LIB as the interface language.

A second audience consists of those individuals who are implementing an SMT solver that is
compliant with SMT-LIB v.2. These implementors will be fully versed in SMT solvers, how they
work, and the associated logical concepts. However, this tutorial’s discussion of details of the
SMT-LIB format, the command language, and command responses may be relevant. In addition
the reference tools and set of compliance tests should be quite useful to someone intending to
implement a conforming SMT solver. For this set of readers, the goal of the tutorial and tools is
to provide an informal but more accessible overview of the SMT-LIB language and to provide
tools that will enable easier and faster development of a solver’s front-end.

The tutorial consists of these parts:

• this introductory section;

• a set of examples providing readers a quick picture of SMT-LIB scripts;

• the details of the SMT-LIB language, including syntax, sorts, declarations, expressions,
and commands;

6

• a brief description of the built-in logics and theories;

• an introduction to some of the SMT solvers currently available;

• a list of tools available to interested SMT users and implementors.

Anyone who would like to hear about updates to this tutorial or its associated tools is encouraged
to subscribe to the smt-lib@cs.nyu.edu mailing list; you can register for the mailing list at http:
//www.cs.nyu.edu/mailman/listinfo/smt-lib.

1.3 Mechanics

The document employs a few definitions and typographical conventions; these are described here.

A conforming SMT solver is one whose behavior obeys the SMT-LIB v.2 standard. Such a solver
may do more than the standard requires, but not less. For example, it may define more options
or more commands, or it may be less restrictive in interpreting commands. However, any legal
SMT-LIB v2 input must be accepted without complaint and yield the defined response.

This document only describes SMT-LIB version 2; references to SMT-LIB are simply an abbre-
viated reference to version 2 of the language.

Verbatim characters. Text written using a monospaced font, e.g. font, represents character
sequences that are to be interpreted verbatim. Typically, they are SMT-LIB input or output or
fragments of SMT-LIB commands.

Semantic categories. This document uses character sequences such as <string> or <symbol> or
<binary> (using italics and enclosed in angle brackets) to denote various semantic categories.
For example, <string> represents an element of the set of character sequences denoting SMT-
LIB strings: sequences of characters from a specified set enclosed in " characters.

Examples. The tutorial includes a number of examples. Some of them are examples of input to
and output from a conforming SMT solver. These examples are typeset within a box in-line in
the text. For example,

> (set-logic QF_UF)

success

> (set-logic QF_UF)

(error "The logic has already been set")

In such examples, the lines beginning with > show input that the user provides to the solver,
as if the > were a prompt; the other lines are the output received from the tool. In the example

7

http://www.cs.nyu.edu/mailman/listinfo/smt-lib
http://www.cs.nyu.edu/mailman/listinfo/smt-lib

above the two (identical) set-logic commands, including the containing parentheses are user in-
put; the two lines containing the word success and the error response are the output. In some
cases, the input will be continued on a second line, with a second prompt; these lines are shown
beginning with ...> , as in

> (set-logic

...> QF_UF)

success

> (set-logic QF_UF)

(error "The logic has already been set")

Note that these are two separate lines of user input, not simply a long line having wrapped;
that is, the user typed a new line in the middle of the command. The tutorial sometimes omits the
success responses to save space.

Comments in the examples — the text from a semicolon to the end of the line — are not part of
the input or output, but descriptive text to explain aspects of the example.

Symbols. The document uses these (infix) symbols for logical operations: ∧ (conjunction), ∨
(disjunction), ¬ (logical negation),⇒ (logical implication),≡ (logical equivalence), 6= (exclusive
or - that is, logical inequivalence), ∀ (universal quantifier), and ∃ (existential quantifier).

8

Chapter 2

Quick Start

There are a number of components to the SMT-LIB language: lexical structure, how logical
expressions are written, the command language, and the various underlying logics. These are all
described in detail in the following chapters. However, they proceed from the ground up, so only
at the end can a useful script be written. This approach does not appeal to the person eager to
see something work. So this chapter contains several simplified examples that show the general
style, but do not explain all the details. After reviewing these, the reader can simply experiment
or can read the following chapters to gain a more thorough understanding of the components.

First, you need an SMT-LIB conforming solver with which to work. Unfortunately, most solvers,
though they may be excellent at solving constraints, are not yet fully SMT-LIB compliant. Var-
ious options for solvers are described in chapter 5, from which you may choose. Some of them
can act as SMT-LIB solvers through a Java adapter interface. The adapter interface is SMT-LIB
conforming, but you still need a back-end SMT solver. Or you can simply use the adapter inter-
face as a command and type checker, without doing any actual constraint solving. To be specific,
here is the command line for the adapter+simplify solver (where "<path>" is replaced by an ab-
solute file-system path to the Simplify executable on your system):

java -jar jSMTLIB.jar �solver simplify -exec <path>

The command above will respond with a prompt (>). If you like, you can type commands
directly at the prompt. However, most users may prefer to edit a script in a file, both to save the
script and to conveniently correct or change the script. In that case, the command would be (here
<file> is the file-system path to the script file—either absolute or relative to the current working
directory):

java -jar jsmtlib.jar �echo �solver simplify -exec <path> <file>

9

Basic Boolean example

Here is a first example, which declares a Bool value p and asks whether (p∧¬p) is satisfiable:

> (set-logic QF_UF)

success

> (declare-fun p () Bool)

success

> (assert (and p (not p)))

success

> (check-sat)

unsat

> (exit)

success

The response to check-sat is unsat, indicating that the formula is not satisfiable. There is
no value of p for which it is true. Equivalently, its negation is always true. So ¬(p∧¬p) is a
tautology. In SMT-LIB syntax, this is written (not (and p (not p))). Note that all of the
subexpressions are written in fully parenthesized, prefix style.

Setting options

Conforming SMT solvers have a number of options that change the behavior of the solver. A
simple one is :print-success; this option controls whether success is returned in response to
each successful command. Here is the first example, with :print-success turned off.

> (set-option :print-success false)

> (set-logic QF_UF)

> (declare-fun p () Bool)

> (assert (and p (not p)))

> (check-sat)

unsat

> (exit)

Integer Arithmetic

This next example contains some arithmetic. For that we use a logic that defines basic arithmetic
on integers, the QF_LIA logic. Now we can ask, for example, if there is a solution to the pair of

10

equations x+2∗ y = 20 and x− y = 2.

> (set-logic QF_LIA)

success

> (declare-fun x () Int)

success

> (declare-fun y () Int)

success

> (assert (= (+ x (* 2 y)) 20))

success

> (assert (= (- x y) 2))

success

> (check-sat)

sat

> (exit)

success

This similar example does not have a solution. There is a solution if x and y are Real, but not if
they are Int.

> (set-logic QF_LIA)

success

> (declare-fun x () Int)

success

> (declare-fun y () Int)

success

> (assert (= (+ x (* 2 y)) 20))

success

> (assert (= (- x y) 3))

success

> (check-sat)

unsat

> (exit)

success

Getting values

The first example of the previous section determined that the given constraint problem did indeed
have a solution, but did not say what the solution is. To find the solution, one must set a couple
options and then use the get-value command; one must also have a solver that supports report-

11

ing the model satisfying a constraint problem.

> (set-option :print-success false)

> (set-option :produce-models true)

> (set-option :interactive-mode true)

> (set-logic QF_LIA)

> (declare-fun x () Int)

> (declare-fun y () Int)

> (assert (= (+ x (* 2 y)) 20))

> (assert (= (- x y) 2))

> (check-sat)

sat

> (get-value (x y))

((x 8)(y 6))

> (exit)

Using scopes to explore multiple problems

Sometimes there are multiple problems one would like to explore with the same set of definitions
and some of the same assertions. To do that, we use the push and pop commands.

> (set-option :print-success false)

> (set-logic QF_LIA)

> (declare-fun x () Int)

> (declare-fun y () Int)

> (assert (= (+ x (* 2 y)) 20))

> (push 1)

> (assert (= (- x y) 2))

> (check-sat)

sat

> (pop 1)

> (push 1)

> (assert (= (- x y) 3))

> (check-sat)

unsat

> (pop 1)

> (exit)

12

Defining new sorts

Some problems profit by defining and using new sorts.

> (set-option :print-success false)

> (set-logic QF_UF)

> (declare-sort A 0)

> (declare-fun a () A)

> (declare-fun b () A)

> (declare-fun c () A)

> (declare-fun d () A)

> (declare-fun e () A)

> (assert (or (= c a)(= c b)))

> (assert (or (= d a)(= d b)))

> (assert (or (= e a)(= e b)))

> (push 1)

> (distinct c d)

> (check-sat)

sat

> (pop 1)

> (push 1)

> (distinct c d e)

> (check-sat)

unsat

> (pop 1)

> (exit)

Getting information

Solvers can provide some identifying information, obtained with the get-info command:

> (get-info :name)

(:name "simplify")

> (exit)

success

13

Chapter 3

The SMT-LIB Language (v2)

3.1 Some logical concepts

This tutorial does not provide an introduction to logic or the details of SMT solvers. However,
a reader that understands the following concepts will be able to use an SMT solver and the
SMT-LIB command language more effectively. A reader interested in the formal semantics of
SMT-LIB should consult chapter 4 of the SMT-LIB definition[3].

3.1.1 Satisfiability and Validity

The first concept to understand is the dual relationship between satisfiability and validity. A
formula P is valid if P always evaluates to true for any assignment of appropriate values to its
function symbols. A formula P is satisfiable if there is some assignment of appropriate values
to its function symbols under which P evaluates to true. Validity is about finding a proof of a
statement; satisfiability is about finding a solution to a set of constraints.

Consider a logical expression P with some free constants, say x and y. We can ask whether P is
valid, that is whether it is always true for any combination of values for x and y. If P is always
true, then ¬P is always false, and then ¬P will not have any satisfying assignment; that is, ¬P is
unsatisfiable. In other words,

P is valid precisely when ¬P is not satisfiable (is unsatisfiable).
Alternately,

P is satisfiable if and only if ¬P is not valid (is invalid).

SMT solvers find satisfying assignments (or report that there are none). To determine whether a
formula P is valid, we ask an SMT solver whether ¬P is satisfiable. Similarly, to determine if

(P∧Q)⇒R

14

is valid, we ask whether its negation,
P∧Q∧¬R,

is satisfiable. If the latter is unsatisfiable, the former is valid. If P∧Q∧¬R is satisfiable, a prover
is usually able to provide an assignment of values to its free symbols that makes the formula true;
that assignment serves as a counterexample of why (P∧Q)⇒R is invalid (why it is not always
true). In general, if we are looking for why a formula P is not a theorem, we can look for an
assignment that makes ¬P true.

3.1.2 Quantified formulas and SMT solvers

The SMT-LIB language permits quantified expressions, stating that an expression is true for
all values of a variable, or for at least one value of a variable. Such expressions are, of course, a
natural part of first-order logic. However, most SMT solvers do not handle quantified expressions
well. The presence of quantified expressions can lead to a solver being unsure whether a potential
satisfying assignment is indeed a correct satisfying assignment; this phenomenon can happen
because the solver cannot be sure it has instantiated the quantified expression for all cases relevant
to the satisfiability problem at hand. Thus for some sets of formulae, an SMT solver may respond
unknown to the question of whether the problem is satisfiable or not. Often in such a case the
solver may report an assignment, though the unknown response indicates that the solver is not
certain it is a truly satisfying assignment. Handling quantifiers is an area of research for SMT
solvers; some logics (cf. section 4) forbid quantifiers and have faster and more certain decision
procedures as a result.

3.1.3 Many-Sorted Logic

The SMT-LIB language expresses logical problems in a many-sorted first-order logic. Accord-
ingly, each well-formed expression has a unique sort (known in some other contexts as a type).
The language provides syntax and commands for defining new sorts and for expressing the sort of
new symbols. The pre-defined sort Bool is the sort of all Boolean propositional expressions. For
example, the propositional connectives and and or take arguments of sort Bool and have a result
value of sort Bool; the equality predicate (=) takes two arguments of the same (but arbitrary)
sort and has a result value of sort Bool. Each function symbol requires particular sorts for its
arguments and has a defined result sort; in some cases, function symbols can be overloaded, but
the result of a (disambiguated) function symbol applied to specific arguments of the correct sorts
always has a unique sort. Expressions within SMT-LIB are correct only if they are well-sorted,
that is, if the arguments of function symbols have the sorts expected by the function.

Some other sorts are defined by specific logics. For example, Int is a sort defined in the QF_LIA
logic (and others) to denote the integers and Real is defined in the AUFLIRA logic to mean the
conventional Real numbers.

15

3.1.4 Formulas and terms

Some automated reasoning tools make a sharp distinction between formulas and terms. Infor-
mally, formulas are subexpressions with Boolean values and are combined by top-level connec-
tives such as conjunction and disjunction; terms have values and arguments of other sorts, such
as (x+1); predicates bridge the gap by taking terms as arguments and having Boolean values.
Terms and predicates do not have Boolean values as arguments.

The nuisance with this distinction is that sometimes one wants to have Boolean expressions as
arguments of terms or predicates. Furthermore, making the distinction requires there to be an
equality defined for formulas and one for terms, and similarly for inequality and if-then-else.
When applying SMT solvers to software verification programs, one has to map programming
language boolean types into a logical sort different than the conventional Boolean propositional
sort.

The SMT-LIB language does not make a distinction between formulas and terms: formulas are
simply terms whose sort is Bool. Boolean values can be defined to be the arguments of user-
defined term-like functions just as can the values of any other sort. This simplifies the logic
and the use of the SMT-LIB language. However, in using non-SMT-LIB solvers (such as when
converting SMT-LIB constructs to be used by such solvers) it is helpful to remember that some
solvers enforce this distinction.

3.1.5 Abstract and concrete syntax

The SMT-LIB language is described using an abstract syntax, but it is written with a particular
concrete representation. For example, the language is defined using an abstract lexical category
<numeral>; the concrete syntax for an element of that category is an unsigned decimal digit
sequence with no leading zeros. While that representation is natural, others are not necessarily
obvious. For example, the Int theory defines an add operation that takes two numeric arguments.
The concrete syntax for an instance of that expression is (+ 1 2); but an alternate concrete
syntax might just as well be (1 + 2) or (add 1 2). This tutorial only discusses the one concrete
syntax described and standardized in [2], but the reader should be aware that alternate concrete
syntaxes consistent with the SMT-LIB abstract syntax could also be defined. Note that the SMT-
LIB document uses the abstract syntax only to facilitate the definition of the one concrete syntax
and its semantics. The abstract syntax is not part of the SMT-LIB 2 standard, only the concrete
syntax is.

16

3.2 Character set

SMT-LIB content is written using a subset of the ASCII character set1. The permitted characters
are

• printable characters: those from ! (ASCII character 33 (decimal)) through ~ (ASCII char-
acter 126), namely

– digits: 0 1 2 3 4 5 6 7 8 9

– letters: a through z and A through Z

– punctuation characters:

~ ` ! @ # $ % ^ & * () _ - + = { } [] | \ ; : ' " , . < > ? /

• and whitespace characters

– space (ASCII character 32)

– tab (ASCII character 9, often written \t)

– newline (ASCII character 10, often written \n, which is the line termination on UNIX
systems)

– carriage return (ASCII character 13, often written \r; \r\n is the two-character line
terminator on Windows systems)

Different sets of characters are permitted in different places. The different subsets of the SMT-
LIB character set are defined here for reference.

• digits: the characters 0 through 9

• alphanumeric: the characters 0 through 9, a through z, A through Z

• whitespace: space, tab, newline, and carriage return, as described above
• line terminators: newline and carriage return
• symbol characters: alphanumerics plus any of these punctuation symbols

~ ! @ $ % ^ & * _ - + = < > . ? /

Note that this list excludes the printable characters
" ' ; : | { } [] () ` , \ #

• smt-lib character: any printable or whitespace character

1http://www.asciitable.com/

17

3.3 S-expressions

All input to and output from a conforming solver (using the standard concrete syntax) is a se-
quence of one or more S-expressions expressed using smt-lib characters, with optional inter-
spersed comments. Comments are all of the text beginning with a semicolon that is not part of a
string literal or quoted symbol up to but not including the first succeeding line terminator charac-
ter (or end-of-input); comments are only for human consumption and are completely ignored by
the parser. Since comments are always followed by line termination characters, they function as
separating white space.

S-expressions have a particularly simple form, making them easy to parse and process. An S-
expression is either (a) a token (defined in the next subsection) or (b) a sequence of 0 or more
S-expressions enclosed in a pair of left and right parentheses. Tokens must be separated from each
other by whitespace; there need be no white space on either side of a left or right parenthesis.

Here are some examples. The rules about what can be a token are described in the next section.

abc ; a single token

(abcdef 7 +-*) ; an S-expression consisting of a sequence

; of three tokens

(+ 5 (* 2 3)) ; a more complex, nested S-expression

() ; an empty S-expression

(abc "a b c d") (ghi jkl) ; two successive S-expressions, each

; containing two tokens

(ABC ; a comment in the middle of an S-expression

def) ; the end of an S-expression spanning two lines

Pairs of left and right parentheses are the only structure given to a sequence of tokens. A right
parenthesis without a corresponding left parenthesis is fairly easy to detect. However, a missing
right parenthesis may not be detected until the end of input (e.g. end of file) is reached; an input
parser may have a hard time recovering from mis-matched parentheses—match them carefully!

3.4 Tokens

Not every sequence of smt-lib characters is a valid token. There are different kinds of tokens and
they play different roles in different commands. In this section we describe the various tokens
defined by SMT-LIB; a summary of token types is provided in Table 3.1. For convenience in
referring to tokens, we use designators such as <numeral> so that later we can describe the
syntax of commands by, for example, (push <numeral>) as the general case of (push 0),
(push 1), and so on.

18

To
ke

n
ty

pe
Fo

rm
at

R
eg

ul
ar

E
xp

re
ss

io
n

(P
O

SI
X

)a
E

xa
m

pl
es

<
nu

m
er

al
>

a
se

qu
en

ce
of

di
gi

ts
w

ith
ou

tl
ea

di
ng

ze
ro

s
0
|
(
[
1
-
9
]
[
0
-
9
]
*
)

0
1

1
2
3
4
0

<
de

ci
m

al
>

a
<

nu
m

er
al

>
fo

llo
w

ed
by

a
pe

ri
od

fo
l-

lo
w

ed
by

a
se

qu
en

ce
of

di
gi

ts
(
0
|
(
[
1
-
9
]
[
0
-
9
]
*
)
)
[
.
]
(
[
0
-
9
]
+
)

0
.
0
0
.
1

1
.
0

1
2
.
0
0
3
4

<
bi

na
ry

>
th

e
tw

o
ch

ar
ac

te
rs

#
b

fo
llo

w
ed

by
a

no
n-

em
pt

y
se

qu
en

ce
of

0
or

1
#b

[0
1]

+
#
b
0
#
b
1

#
b
1
0
1
0
1
0
1
0
1

#
b
1
1
1
1
1

<
he

x>
th

e
tw

o
ch

ar
ac

te
rs

#
x

fo
llo

w
ed

by
a

no
n-

em
pt

y
se

qu
en

ce
of

he
x

di
gi

ts
#x

[0
-9

a-
fA

-F
]+

#
x
A
#
x
0
A

#
x
5
1
d
e
a
d

#
x
F
e
e
D
1
2
3
4

<
st

ri
ng

>
a

st
ri

ng
lit

er
al

:
a

se
qu

en
ce

of
sm

t-
lib

ch
ar

ac
te

rs
(i

nc
lu

di
ng

ex
pl

ic
it

w
hi

te
-s

pa
ce

ch
ar

ac
te

rs
),

en
cl

os
ed

in
"

ch
ar

ac
te

rs
;\

"
is

in
te

rp
re

te
d

as
"

an
d
\
\

as
\

"
(
[
]
!
#
-
[
^
-
~

\
t
\
r
\
n
]
|
\
\
[
!
-
~
]
)
*
"

"
"
"
a
\
"
b
"

"
a

b
"
"

b
"

<
sy

m
bo

l>
ei

th
er

a
<

si
m

pl
e-

sy
m

bo
l>

or
a

<
qu

ot
ed

-
sy

m
bo

l>
<

si
m

pl
e-

sy
m

bo
l>

a
no

n-
em

pt
y

se
qu

en
ce

of
sy

m
bo

l
ch

ar
ac

-
te

rs
,n

ot
be

gi
nn

in
g

w
ith

a
di

gi
t,

an
d

no
ta

re
se

rv
ed

w
or

d
[
a
-
z
A
-
Z
~
!
@
$
%
^
&
*
_
+
=
<
>
.
?
/
-
]

[
0
-
9
a
-
z
A
-
Z
~
!
@
$
%
^
&
*
_
+
=
<
>
.
?
/
-
]
*

a
b
*

<
=

<
qu

ot
ed

-s
ym

bo
l>

a
se

qu
en

ce
of

sm
t-

lib
ch

ar
ac

te
rs

,
no

t
in

-
cl

ud
in

g
\

an
d
|,

en
cl

os
ed

in
|c

ha
ra

ct
er

s
|
[
]
!
-
[
^
-
{
}
~

\
t
\
r
\
n
]
*
|

|
a
|
|
|

|
a

+
|

<
ke

yw
or

d>
a

co
lo

n
fo

llo
w

ed
by

a
no

n-
em

pt
y

se
qu

en
ce

of
sy

m
bo

lc
ha

ra
ct

er
s

:
[
0
-
9
a
-
z
A
-
Z
~
!
@
$
%
^
&
*
_
+
=
<
>
.
?
/
-
]
+

:
a
b
c

R
es

er
ve

d
w

or
ds

ch
ar

ac
te

r
se

qu
en

ce
s

th
at

w
ou

ld
ot

he
rw

is
e

be
sy

m
bo

ls
bu

t
ar

e
re

se
rv

ed
fo

r
sp

ec
ia

l
pu

rp
os

es
an

d
m

ay
no

tb
e

us
ed

as
sy

m
bo

ls

(
l
e
t
|
p
a
r
|
_
|
!
|
a
s
|
f
o
r
a
l
l
|
e
x
i
s
t
s
|

N
U
M
E
R
A
L
|
D
E
C
I
M
A
L
|
S
T
R
I
N
G
)

an
d

al
lc

om
m

an
d

na
m

es

l
e
t
p
a
r

_
a
s
s
e
r
t

c
h
e
c
k
-
s
a
t

Ta
bl

e
3.

1:
To

ke
n

ty
pe

s
de

fin
ed

in
SM

T-
L

IB

a In
th

es
e

re
gu

la
re

xp
re

ss
io

ns
th

e
(
)
[
]
-
+
*
|
.
\

ch
ar

ac
te

rs
ha

ve
th

ei
ru

su
al

[7
]s

pe
ci

al
m

ea
ni

ng
,w

ith
\

be
in

g
th

e
es

ca
pe

ch
ar

ac
te

r.

19

Although the various kinds of literals have some conventional, intuitive meanings, their semantics
is actually determined by the definition of the logic being used. <decimal>s might represent
rationals in one logic and reals in another; <binary>s might be bit sequences in one logic and
integers in another; even <string>s might be interpretable as integers or sequences.

Numerals. A numeric literal is expressed as a conventional sequence of digits. Caution: no
leading zeros are allowed: 002 is not a valid <numeral>. Also no leading + or - signs are
allowed: -1 is a <symbol>, not a <numeral>.

Decimal literals. A decimal literal is a <numeral> followed by a decimal point, followed by
more digits. As with <numeral>s, a <decimal> may not have leading zeros or sign characters.
There must however, be at least one digit (possibly a 0) before and at least one after the decimal
point. There is no provision for exponents.

Binary literals. These literals, prefixed by #b, denote a simple sequence of 0’s and 1’s. Which
end is the most significant bit or the beginning or end of a sequence will depend on the definition
of the logic.

Hex literals. These literals, prefixed by #x, denote a sequence of hex digits. Though an interpre-
tation as a bit sequence or an integer is reasonable, the actual interpretation depends on the logic
being used.

String literals. String literals are composed of any sequence of printable and whitespace char-
acters (including line terminations), enclosed in double quotes ("), with special treatment for "
and \ characters. A " character within the string is designated by the two-character sequence \"
and the \\ sequence represents a single \. The content of a string literal is uninterpreted. Any
meaning is provided by the context of its use within SMT-LIB (e.g. as the value of an option)
or by a theory. No currently defined theory incorporates string literals. Note that future theories
may define escape sequences that allow including any ASCII character in the string, but none are
defined at present (besides the two for \ and "). So \n within a string literal just means those
two characters, not necessarily a line terminator. Caution: String literals begin and end with a "
character. Since string literals may contain explicit line terminator characters, an omitted closing
" will not be noticed until the next " character or until the end of input. This may be several lines
later.

Reserved words. Some character sequences are reserved words in SMT-LIB. They may only be
used in specific contexts and may not be used as symbols. Hence they may not be declared by
the user to represent user-defined quantities. The reserved words are

par NUMERAL DECIMAL STRING _ ! as let forall exists

and all the commands of the script language. Note particularly that _ and ! are reserved; their
use is described in section 3.7. The currently defined commands are

assert check-sat declare-fun declare-sort define-fun define-sort

exit get-assertions get-assignment get-info get-option get-proof

20

get-unsat-core get-value pop push set-info set-logic set-option .

Though technically there is no need to identify reserved words and disallow their use as symbols,
SMT-LIB does so as a convenience for (some kinds of) parsers. Thus a caution: future versions
of SMT-LIB might possibly define new commands, which presumably would then disallow their
use as symbols, potentially invalidating old SMT-LIB scripts in which those new command names
were used as ordinary symbols. One should try to avoid using character sequences as symbols
that might become command names in the future!

Symbols. Symbols are used for attribute values, and sort, variable, logic, theory, constant and
function names. A symbol can be any sequence of symbol characters that does not start with a
digit and is not a reserved word. In addition, user-defined symbols may not begin with an @ or a
period (.); such symbols are reserved for internal use. Some symbols consisting of punctuation
characters, such as + and - have intuitively natural meanings as function symbols, though their
meaning is always defined solely by the logic being used. Similarly, symbols that are English
words may have obvious meanings. Good style would suggest avoiding legal but unusual symbols
that mix alphanumerics and operator-like characters, such as a<b or ab+- or -1.

Quoted symbols. An alternate form of symbol is a sequence of any smt-lib characters except |
and \, enclosed in beginning and ending | characters. This allows a wider choice of characters
in forming the symbol. Note that explicit line terminators are allowed within a quoted symbol,
so that a quoted symbol might span more than one line.2 Note also that, because line terminators
are allowed, a missing terminating | character may not be detected for several lines. Finally note
that using enclosing |s does not change the identity of the symbol: |abcde| is the same symbol
as abcde. A symbol such as |{}| does not have a corresponding unquoted symbol.

Keywords. A keyword consists of a : character followed by a sequence of symbol characters.
They are used as the names of attributes, options and information flags. Good style would suggest
that only alphanumeric characters (including perhaps the - and _ characters) be used for user-
defined keywords.

Invalid tokens. Some sequences of characters are not valid tokens:

• unclosed string literals and unclosed quoted symbols
• digit sequences or <decimal>-like sequences with leading zeros, such as 00, 01, or 00.0.
1.000 is a valid <decimal>.

• decimal-like sequences with no digits after the decimal point (the sequence .123 is a sym-
bol, but since it begins with a period, it may not be declared by the user)

• sequences of symbol characters beginning with digits, such as 0ABC
• a # character not beginning a valid <binary> or <hex> token

2Quoted symbols (and strings) containing explicit line terminations can be hard to read. However, SMT-LIB was
designed primarily as a machine-to-machine format and readability was not the major concern.

21

digit sequences with leading zeros 00 0123

decimals with leading zeros 00.123 01.234

decimals with no decimal digits 1.
would-be symbols that begin with digits 1abc

would-be symbols containing invalid characters abc'def

invalid binary literals #b222

invalid hex literals #xZZZZ

unclosed strings "abc\"

unclosed quoted symbols |asd

quoted symbols with invalid characters |abc\def|
keywords with invalid characters :abc[def

Table 3.2: Invalid tokens

• use of printable but non-symbol characters outside of string literals or quoted symbols,
such as a comma character

• purported keywords and quoted symbols that contain forbidden symbols

Table 3.2 shows some examples.

3.5 Sort and Function Declarations

SMT-LIB requires all identifiers to be declared before being used. Some symbols are declared in
the selected logic and its theories. New symbols are introduced by the user in four commands:

declare-sort – which introduces a new sort symbol
define-sort – which introduces a new sort symbol as an abbreviation for a given sort
expression
declare-fun – which introduces a new function symbol
define-fun – which introduces a new function symbol as an abbreviation for a given
expression

These commands are described in full in subsections 3.9.3 and 3.9.4.

New sort symbols can be defined as new simple sort names or as parameterized sorts that take
other sorts as parameters. Every value within an SMT-LIB logic has a specific sort; functions all
have specific sort signatures that designate the sorts of the arguments and results.

New constants and function symbols are declared in a uniform way; constants are simply func-
tions with no arguments. To declare a new function symbol, we need to specify the sorts of the

22

arguments and of the return value. For example, to declare a new symbolic constant value (a
function with no arguments) named x of sort Bool we write:

(declare-fun x () Bool)

This statement declares a function f of two Ints, returning a Bool:
(declare-fun f (Int Int) Bool)

And this declares a function ff that returns an Int and takes one argument that is an Array of
Int index type and Bool value type:

(declare-fun ff ((Array Int Bool)) Int)

3.6 Attributes

SMT-LIB uses attributes to attach meta-data to other syntactic entities. An attribute consists of a
<keyword> or a <keyword>-value pair. As defined in section 3.4, a keyword is a : followed by a
non-empty sequence of symbol characters. An attribute value (an <attr-value>) is in general any
arbitrary S-expression, except that it may not be a <keyword>. But each individual <keyword>
may have only a limited set of allowed values (or may not take a value at all). For example,
the keyword :left-assoc has no value; the keyword :print-success may have only the val-
ues true and false. The attributes defined in SMT-LIB only have values that are <symbol>s,
<numeral>s, or <string>s.

Attributes and attribute values are used in these circumstances:

• as option keys and values (cf. section 3.9.11)
• as information keys and values (cf. section 3.9.12)
• as part of a ! expression (cf. section 3.7)
• to declare the various aspects of a theory or logic (cf. section 4)
• to describe associativity characteristics of functions defined in theories (cf. sections 4.1

and 3.7)
• to describe characteristics of a sort symbols defined in a theory (though no such attributes

are currently defined)

3.7 Expressions

As is common in computer-parsable expression languages, SMT-LIB expressions (<expr>) are
built recursively from a small set of basic forms. A valid expression is one of the following
(the expression must also be well-sorted). Here and later in the tutorial, a + character indicates
1-or-more instances of the immediately preceding item and a * indicates zero-or-more instances.

23

a numeric literal <numeral>
a decimal literal <decimal>
a string literal <string>
a binary literal <binary>
a hex literal <hex>
an <identifier>, which is one of:

a symbol: <symbol>
an indexed identifier: (_ <symbol> <numeral>+)

a qualified-identifier: <identifier>
or (as <identifier> <sort>)

a function application: (<qualified-identifier> <expr>+)
a forall-expression: (forall ((<symbol> <sort>)+) <expr>)
an exists-expression: (exists ((<symbol> <sort>)+) <expr>)
a let-expression: (let ((<symbol> <expr>)+) <expr>)
an attributed expression: (! <expr> <attribute>+)

Literals. The constant literals are <string>, <numeral>, <decimal>, <binary>, and <hex>.
Remember that the interpretation and sort of these literals depends on the theories that have
been defined in the current solver environment (by a set-logic command). For example, the
simplest logic, QF_UF, defines just the Core theory, in which none of the above literals are defined.
<numeral> is used in most of the other theories; <decimal> is used in the Reals theory, and
<binary> and <hex> are defined in the Fixed_Size_BitVectors theory.

Identifiers. Identifiers are available in all theories and are used as names of variables, parameters,
functions, sorts, logics, theories, expressions, and as the values of some attributes. Identifiers are
either simple symbols or indexed identifiers. The latter have the form (_ <symbol> <numeral>+
) and allow the use of a family of identifiers that are indexed by one or more numerals. Indexed
identifiers are only allowed in restricted settings:

• variables (in forall, exists, and let expressions) – symbols only
• sort and function names – theories may define indexed identifiers as sort and function

names, but users may only introduce new symbols as sort and function names.
• parameters in define-sort and define-fun commands are always symbols
• logic and theory names are all pre-defined and are always symbols
• expression names (using the ! expression syntax) are always symbols
• attribute values are sometimes symbols; since attribute values can be general S-expressions,

they can possibly be indexed identifiers, but no pre-defined attributes do so

The only indexed sort identifier currently defined is (_ BitVec <numeral>), the sort of bit-
vectors whose length is the given numeral. For example, in the Fixed_Size_BitVectors the-
ory, the constant #b101 has sort (_ BitVec 3) and the hexadecimal constant #x1A has sort (_
BitVec 8).

24

There is no way within (current) SMT-LIB to declare a whole family of identifiers. For example,
one might like to write the following as a way of declaring a whole family of C identifiers to have
Int sort

> (declare-fun (_ C n) () Int) ; INVALID SMT-LIB

to say that all identifiers of the form (_ C <numeral>) are Ints. Even more useful would be
allowing the index to be used in the sorts, as in

> (declare-fun flip ((_ BitVec n)) (_ BitVec n)) ; INVALID

> (declare-fun (_ flip n) ((_ BitVec n)) (_ BitVec n)) ; INVALID

At present, however, such constructions must be pre-defined informally within theories and built
in to the corresponding solvers.

Function expressions. The application of a function to a sequence of arguments is expressed
simply as

(<qualified-identifier> <expr>+) .
The syntax is uniformly prefix in style. No infix notation is used, even for conventional arithmetic
operators. In SMT-LIB we write (+ 1 2), not (1 + 2).

There are a number of points to note:

• The function identifier must be already declared using a declare-fun or define-fun

command, or have been pre-defined in the logic being used.

• The logic being used may restrict the kinds of expressions that are allowed. See section 4
for details about any particular logic.

• The number of arguments must correspond to the number of arguments declared for the
function identifier. However, some theory-defined function symbols are defined to take two
or more arguments. This behavior is specified by an attribute given to the function; such
attributes may only be specified within theory definitions, not for user-declared functions.
There are four such attributes. Here are examples of each:

– left associative: or is a function defined in the Core theory that takes two Bool argu-
ments, but can be applied to more using left associativity. (or a b c d) is equiv-
alent to (or (or (or a b) c) d). Other functions with the same behavior are
boolean and and integer and real binary operations. Subtraction and division are also
defined to be left-associative, so (- a b c d) is equivalent to (- (- (- a b) c)

d) (in infix notation, a-b-c-d is equivalent to (((a-b)-c)-d)).

– right associativity: The implies (=>) function is right associative, so (=> a b c d)

is equivalent to (=> a (=> b (=> c d))).

– chainable: The equality and comparison (< > <= >=) functions are what SMT-LIB
calls chainable – the operation is applied to each pair of arguments as one proceeds

25

down the list of arguments. (= a b c d) is equivalent to
(and (= a b) (= b c) (= c d)).

This is a natural definition for equality, but less-common, though convenient for com-
parisons.

– pairwise: all pairs of arguments are compared. The one pre-defined example is the
distinct (not-equal) operation. (distinct a b c d) is

(and (distinct a b) (distinct a c) (distinct a d)

(distinct b c) (distinct b d) (distinct c d)) .

• The expression must be well-sorted. That is, the arguments of the function must have the
sorts that are specified in the definition of the function. There is no subtyping or inheritance
of sorts. There is, however, a modest amount of overloading allowed within theory defini-
tions. No overloading outside of a theory definition is permitted. Thus any declare-fun

or define-fun command must introduce a completely new identifier. There are three
kinds of pre-defined overloading.

– parametric definitions. As an example, the equality function in the Core theory is de-
fined to take two arguments of arbitrary but the same sort, and return a Bool. So = can
be used, as would be naturally expected, for any user-defined sorts as well (responses
are omitted):

> (set-logic QF_UF)

> (declare-sort A 0) ; a new sort named A

> (declare-sort B 0) ; a new sort named B

> (declare-fun a1 () A) ; a new constant of sort A

> (declare-fun a2 () A) ; another constant of sort A

> (declare-fun b1 () B) ; a new constant of sort B

> (declare-fun b2 () B) ; another constant of sort B

> (assert (= a1 a2)) ; comparing values of sort A

> (assert (= b1 b2)) ; comparing values of sort B

> (assert (= a1 b1)) ; ILLEGAL - a1 and b1 have different sorts

– multiple definitions. The addition operation is not defined for arbitrary sorts, but it is
defined both for Int and Real arguments, independently. So one can write (responses
are omitted)

> (set-logic AUFLIRA)

> (assert (= (+ 1 2) 3)) ; adding two Ints

> (assert (= (+ 1.0 2.0) 3.0) ; adding two Reals

> (assert (= (+ 1 2.0) 3.0) ; ILLEGAL - mixed sorts

As the last line of the example above demonstrates, there is no implicit conversion
between Int values and Real values, nor between any other combination of sorts.
The only connections between Int and Real values is through explicit conversion

26

functions such as to_int and to_real in the Reals_Ints theory.3

– overloading on result sort. A theory may also overload a function identifier such
that two declarations of the function take the same argument sorts but return different
result sorts. Suppose you declare a List sort that can take a sort as a parameter.
You may also want a function named emptylist (with no arguments) that returns an
empty list. But emptylist must return a result of a specific sort. To specify the result
sort, we use a qualified identifier, as follows.
To accomplish this example, the theory will declare

* a List sort with one sort argument
* a parametric function named emptylist, with sort parameter A, no arguments,

and result sort (List A)

Then that function might be used as follows (responses are omitted):
...

> (declare-fun listb () (List Bool)) ; listb is a List of Bool

> (declare-fun listi () (List Int)) ; listi is a List of Int

> (assert (= listb (as emptylist (List Bool))))

; use the definition of emptylist

; that has (List Bool) result

> (assert (= listi (as emptylist (List Int))))

; use the definition of emptylist

; that has (List Int) result

> (assert (= listb emptylist)); ILLEGAL - have to specify the

; sort of the overloaded constant

> (assert (= listb (as emptylist (List Int)))) ; ILLEGAL -

; sort mismatch

Quantified expressions. The SMT-LIB language allows the two conventional quantified expres-
sions — universal (for all) and existential (there exists). There is no syntax for the occasionally
used quantifier meaning "there exists uniquely". Note that quantified expressions are not permit-
ted in quantifier-free logics (e.g. QF_UF).

Both kinds of quantified expressions provide syntax to specify the names and sorts of parameters
over which the expression quantifies. For example, the expression

(forall ((x Int)) (> (p x) 0))

is true under the AUFNIRA logic and an assignment for p in which the sub-expression (p x) is
positive for any Int value of x. Note the double pair of parentheses around “x Int". The outer
pair encloses the whole list of parameters; each name-sort pair is enclosed in its own pair of
parentheses. So if there are two quantification variables, we would write

3The AUFLIRA and AUFNIRA logics currently state that ints are implicitly converted to reals in some circum-
stances, but the discussion on the mailing lists concluded this should not be allowed.

27

(exists ((x Int)(y Int)) (and (> (+ x y) 0) (< (- x y) 0)))

The value of this example expression is true since there are specific integer values for x and y

that are solutions to the two inequalities.

The scope of the quantification variables is limited to the sub-expression that is the target of the
quantification expression. The names of the quantification variables must be <symbol>s, not
<identifier>s; they may shadow previously defined variables or functions, but only do so within
the target expression.

Let expressions. Let expressions provide the ability to make expressions more compact by
abbreviating common sub-expressions. A let-expression has the form

(let (<binding>+) <expr>)

Each <binding> associates a symbol and an expression; it is simply a parenthesized pair:
(<symbol> <expr>) .

The symbol is an abbreviation for its expression within the target expression of the let construct;
the sort of the new symbol is the same as the sort of the expression to which it is bound. The
whole let construct is entirely equivalent to replacing each new parameter by its expression in
the target expression, eliminating the new symbols completely (renaming functions as needed to
avoid name capture by variable bindings).

As with quantified expressions, the new symbol is in scope only within the target expression and
can shadow previously declared variables and functions within that scope. Also, the new symbols
are not in scope in any of the bound expressions — it is a "parallel let". For example, presuming
x and y are already defined prior to these let expressions in the context of the QF_LIA logic,

(let ((a (+ x y)) (b (- x y))) (+ a b))

is equivalent to
(+ (+ x y) (- x y)) .

These are both also equivalent to
(let ((x (+ x y)) (y (- x y))) (+ x y))

since the x and y in the first (+ x y) and (- x y) refer to the already defined x and y, but the x
and y in the last (+ x y) refer to the new parameters of the let expression.

Attributed expressions. Attributed expressions allow additional information to be associated
with an expression. The value of the expression is not changed. Though additional kinds of
attributes (cf. section 3.6) may be defined in the future or by solvers with their own extensions,
within SMT-LIB, the only defined behavior within an expression is to name the (sub-)expression.
The general form of the attributed expression is

(! <expr> <attribute>+).
Specifically, to name an expression one writes

(! <expr> :named <symbol>).
The <symbol>is the name of the expression. The expression being named may not contain any
variables (as declared in forall, exists, or let expressions), only function symbols.

There are two uses for named expressions.

28

The first is to identify which expressions are to be reported as part of the unsatisfiable core when
a group of assertions are found to be unsatisfiable or as part of a get-assignment command if
the assertions are found to be satisfiable. Refer to sections 3.9.7 and 3.9.8 for more information
about these commands.

The second use is syntactic sugar for abbreviating sub-expressions. For example, writing
(assert (> (! (+ x y) :named sum) 0))

is equivalent to the pair of commands
(define-fun sum () Int (+ x y))

(assert (> sum 0))

This implicit use of define-fun may only be used to introduce new function symbols that do
not have arguments. Also, the sub-expression being abbreviated may not refer to any parameters
of a let or quantified expression (that is, the sub-expression must be closed). The new symbol
may be used within the same larger expression, as long as it occurs "after" its introduction. So
we can write

(assert (>= (! (+ x y) :named sum) sum))

but we cannot use sum before it is introduced:
(assert (>= sum (! (+ x y) :named sum))) ; ILLEGAL

In the latter example, there are two cases: if sum is already declared as a symbol before this
assert command, then naming a new expression with the same name is not permitted; if sum is
not already declared, then the first use of sum is illegal because the symbol is not defined.

When used only to abbreviate sub-expressions within the same expression, the let-expression is
probably a better alternative. Since an expression name introduces a new function symbol, the
expression name may not be the name of an already declared function.

When introducing variables or eliminating variables using substitution, always be careful of name
conflicts caused by shadowing. Inadvertent use of a common name can cause a change in mean-
ing.

3.8 Namespaces and Scopes

SMT-LIB uses <symbol>s and <identifier>s in multiple places within the language:

1. as sort names – new sort identifiers are introduced in theories and new sort symbols in
declare-sort and define-sort commands

2. as function names – new function identifiers are introduced in theories and new function
symbols in declare-fun and define-fun commands

3. as names of expressions (in ! expressions), which are implicitly declarations of new func-
tion symbols – new symbols need no declaration, they are simply introduced as used (sym-
bols only)

29

4. as a variable binding within a forall, exists, or let expression (symbols only)
5. as logic names – these are predefined (symbols only)
6. as theory names – these are predefined (symbols only)
7. as attribute values (just <symbol>s) – new values need no declaration, they are simply

introduced as used
8. as pre-defined responses to commands (e.g. success) – these are defined as part of the

specification of the command
9. as command names (which are technically reserved words and not symbols)

Only the function and variable symbols (categories 2, 3, and 4) are in the same namespace. All
of the others may be declared or introduced independently of each other.

New sort symbols must be different from any previous sort symbol. No shadowing4 or overload-
ing5 is allowed.

Function symbols may be overloaded when defined within a theory, but user-defined function
symbols must be new function symbols. User-defined function symbols may not shadow or
overload any existing function symbols. Variables introduced in quantified or let expressions
may, however, shadow previously declared function symbols or variables; the scope of variables
is only the subterm in which they are declared.

Names of expressions also introduce function names. These therefore must also be different from
any already defined function names.

Logic and theory names are introduced in logic and theory definitions, respectively. Names of
logics are used only in set-logic commands; names of theories are used only in logic defini-
tions. Neither of these uses can be confused with other uses of symbols. However, since logics
and theories have associated definition files (which may well be in the same directory), it is
expected that the names of logics and theories will be distinct.

Values of attributes only appear after <keyword>s and in responses to get-option and get-info
commands; other command responses also may contain symbols such as success, unsupported,
error. A tool that parsed command responses may need to distinguish these, disambiguating
them by the context in which they are produced.

Scopes. The only names affected by the scopes introduced with the push and pop commands
are function and sort names, including the function names introduced by attributed expressions.
Variables in forall, exists, and let expressions have a scope that extends to just the sub-
expression in which they are declared.

4A symbol shadows one of the same name if, within the scope of the new symbol, only the new symbol is
recognized; the shadowed symbol is unavailable in expressions until the scope of the shadowing symbol is exited.

5A symbol overloads a symbol of the same name if both symbols are available within the new symbol’s scope;
the overloaded symbols are distinguished by, for example, the sorts of their arguments

30

3.9 Commands and command output

A conforming solver will support the list of commands shown in table 3.3. Each command has
a set of outputs that it may produce. Those are described with each command in the following
subsections. However, there are a few general points to be made.

• Form of output. All outputs are S-expressions. That is, the output is an individual token,
such as an identifier (e.g. success), or a parenthesized list of tokens, such as an error
message, which has the form (error <string>).

• Typical output. Most commands will produce either success or an error message.

• Error messages. The form of an error message is defined - it is an S-expression consisting
of the token error and a string literal; however the content of the string literal in an error
message is entirely solver-specific. It may even be the empty string, as in (error "").

• Unsupported commands. Some commands may respond with unsupported. This re-
sponse indicates that the command (or the command combined with the particular argu-
ments) is optional in the SMT-LIB standard and is not supported by the given solver.
Solvers are required to respond with unsupported to defined but optional features they
do not recognize, rather than, for example, crashing or emitting an error message.

• Identifiers vs. strings. Some commands take <identifier>s as arguments, others take
<string>s. These are different. For example (set-logic QF_UF) is a valid command,
but (set-logic "QF_UF") is not.

• Continuing after errors. On encountering an error, a solver has two options. It can termi-
nate immediately or it can continue to process other commands. Immediate termination is
most appropriate for batch execution, but is very user-unfriendly in interactive mode. If a
solver continues after an error, it is required that the erroneous command have no effect on
the state of the solver. (cf. subsection 3.9.12)

Note: The hard distinction between always continuing and always immediately exiting
in response to an error is not entirely practical. Some solvers may attempt to continue
whenever possible (e.g. upon encountering syntax errors or out of place commands), but
will not be able to continue (or at least preserve state) in the face of runtime errors such as
lack of enough memory. More importantly, the user may wish to choose different behaviors
in different circumstances, such as in interactive vs. batch execution.

A command script is a sequence of commands, typically contained in a single file. Though some
variations are permitted, a typical order of the commands in a script is this sequence:

• set any options desired using set-option

31

Command name and format when allowed
(set-logic <symbol>) only once
(declare-fun <symbol>

(<sort-expr>*) <sort-expr>) after set-logic
(define-fun <symbol>

((<symbol> <sort-expr>)*)
<sort-expr> <expr>) after set-logic

(declare-sort <symbol> <numeral>) after set-logic
(define-sort <symbol>

(<symbol>+) <expr>) after set-logic
(assert <expr>) after set-logic
(get-assertions) interactive mode, after set-logic
(check-sat) after set-logic
(get-proof) with :produce-proofs option set

true and after check-sat that returns
unsat, without intervening assertion-
set commandsa

(get-unsat-core) with :produce-unsat-cores option
set true and after check-sat that
returns unsat, without intervening
assertion-set commands

(get-value <expr>+) with :produce-models option set
true and after check-sat that returns
sat or unknown, without intervening
assertion-set commands

(get-assignment) with :produce-assignments option
set true and after check-sat that re-
turns sat or unknown, without inter-
vening assertion-set commands

(push <numeral>) after set-logic
(pop <numeral>) after set-logic
(get-option <keyword>) anytime
(set-option <keyword> <attr-value>) anytime, with some options restricted

to being set before a set-logic com-
mand

(get-info <keyword>) anytime
(set-info <keyword> <attr-value>) anytime
(exit) anytime

Table 3.3: SMT-LIB commands
aan assert, push or pop, or definition or declaration command
+ indicates one-or-more repetitions, * indicates 0-or-more of the preceding item

32

• set-logic command
• declarations and definitions
• assert commands
• repetitions of

– push

– perhaps additional declarations and definitions
– assert commands
– check-sat

– if unsatisfiable: optional calls of get-proof and/or get-unsat-core
– if satisfiable: zero or more calls of get-assignment and/or get-value
– pop

• exit

33

3.9.1 Initialization: the set-logic command

The set-logic command has the form:
(set-logic <symbol>)

The command has the effect of initializing the solver with the specified logic. The given <sym-
bol> must correspond to a defined logic; note that the argument is a <symbol>, not a <string>.
All the logics defined in SMT-LIB are presented and discussed in chapter 4; solvers may option-
ally support additional non-standard, solver-specific logics. An example is the QF_UF logic, and
the corresponding example command is

> (set-logic QF_UF)

success

All solvers should recognize the SMT-LIB defined logics, but a solver need not support all logics.
Thus the set-logic command may have these responses:

• success - the solver was successfully initialized with the given logic
• unsupported - the solver does not support the given logic
• error - the argument is not a <symbol> or the named logic is not a defined logic

A set-logic command may be given only once in a given execution of a solver. The command
must precede any definition, declaration, assert or check-sat commands. Only exit, option and
info commands may precede a set-logic command. 6

3.9.2 Termination: the exit command

The exit command has a simple form:
(exit)

The command should always return success and then the solver should terminate. There is no
expectation of any persistent state of the solver. The standard does not allow simply returning
without issuing a response to the command. A solver will return an error if the command is
malformed or if for some reason the solver fails to cleanly terminate.

6The restriction to a single set-logic command in the life of a solver is simply for simplicity. An alternate
rule (not conforming SMT-LIB) could be that a second set-logic command causes a reset of the solver to the new
logic (perhaps retaining current option values).

34

3.9.3 Defining new sorts: declare-sort and define-sort

There are two commands that introduce new sort symbols: declare-sort declares a new sort
and define-sort introduces a new symbol that is the abbreviation for a sort expression.

Sort symbols are in a different namespace than other symbols (e.g. function symbols), so their
names do not conflict or shadow each other. A symbol cannot be declared or defined as a new
sort symbol if there is already a sort symbol with that name. Declarations of sort symbols are
removed when the scope in which they are declared is deleted by a pop command.

declare-sort

The declare-sort command has a simple form. Its arguments are the <symbol> that is the new
sort symbol and a <numeral> that is the number of parameters of the new sort symbol:

(declare-sort <symbol> <numeral>)

A sort symbol with no parameters can be used as a new sort. For example, one can write
...

> (declare-sort MySort 0) ; new sort named MySort

success

> (declare-fun x () MySort) ; using MySort as the sort of a new constant

success

A sort symbol with parameters is not a sort itself, but is used to create a sort when combined with
the correct number of parameters. The parameters are always other sorts. Suppose X and Y are
already defined sorts. Then writing

(declare-sort Pair 2)

declares a new parameterized sort symbol named Pair that takes two parameters. The following
are then three different sorts:

(Pair X X)

(Pair X Y)

(Pair Y Y)

The response to a declare-sort command is either

• success

• an error response if

– the arguments are malformed - wrong number or wrong kinds of tokens
– the given symbol is already declared as a sort symbol
– the command is used before a set-logic command

35

define-sort

The define-sort command defines a new sort symbol that is an abbreviation for a sort expres-
sion. The new sort symbol can be parameterized, in which case the names of the parameters
are specified in the command and the sort expression uses the sort parameters. The form of the
command is this:

(define-sort <symbol> (<symbol>*) <sort-expr>)

A <sort-expr> is either a sort symbol or a sort symbol applied to sort arguments — one of these:
<symbol>

(<symbol> <sort-expr>+)

For example,
(define-sort I () Int)

defines I to be an abbreviation for Int. A use of I is then fully equivalent to a use of Int. The
empty parentheses are required to indicate that I has no parameters.

To demonstrate a parameterized definition, assume that Int and Real are already defined sorts
and that Pair is a sort symbol taking two parameters. The we can define sort symbol P with one
parameter by

(define-sort P (X) (Pair X X))

Then (P Int) is equivalent to (Pair Int Int) and (P Real) is equivalent to (Pair Real

Real).

The <symbol>s used as parameters may be any <symbol>s (whether or not they have existing
declarations or definitions), as long as they are different from each other within the define-sort
command. They will shadow existing sort symbols of the same name.

The response to this command should be either

• success - in which case the new sort symbol is now part of the current scope
• error -

– if the command is malformed
– if the command is used before a set-logic command
– if the symbols used in the definition of the new sort are themselves not yet defined
– if the symbol being declared is already defined
– if there are duplicate symbols used as parameters

3.9.4 Defining new function symbols and constants: declare-fun and define-fun

SMT-LIB requires all identifiers to be declared before being used. The declare-fun command
is used to declare new symbols. Constants and functions are declared in a uniform way; constants

36

are simply functions with no arguments. To declare a new function symbol, we need to specify
the sorts of the arguments and of the return value. The form of the command is this:

(declare-fun <symbol> (<sort-expr>*) <sort-expr>)
The list of sorts within parentheses are the sorts of the arguments; the sort that is the last argu-
ment of declare-fun is the sort of the result. To declare a constant, there are no sorts in the
parentheses, but the parentheses are still present. Users may only introduce new <symbol>s; new
<identifier>s appear only in theory definitions.

The response to this command should be either

• success - in which case the new function symbol is now part of the current scope
• error -

– if the command is malformed
– if the command is used before a set-logic command
– if the symbols used in the definition of the new function symbol are themselves not

yet defined (so no recursion is allowed)
– if the symbol being declared is already defined

So to declare a new symbolic constant value (a function with no arguments) named x of sort
Bool we write:

(declare-fun x () Bool)

This command declares a function f of two Ints, returning a Bool:
(declare-fun f (Int Int) Bool)

And this declares a function size that returns an Int and takes one argument that is an Array of
Int index type and Bool value type:

(declare-fun size ((Array Int Bool)) Int)

It is also possible to declare function symbols whose sort is parametric, but this is allowed only
within a theory definition and does not use the declare-fun syntax. More information about
writing theory definitions is found in section 4.1.

The declare-fun command declares a new function symbol that is wholly uninterpreted. One
can also declare function symbols to be equivalent to a given expression, using the define-fun

command. These simply serve as abbreviations. For example, the command
(define-fun av ((p Int)(q Int)) Bool (or (> p (+ q 2)) (< p (- q 2))))

declares a new binary function symbol av taking Int arguments, returning a Bool; the value is
true when the absolute value of the difference between the two arguments is more than 2.

The general form of the define-fun command is similar to that of the declare-fun command,
with the addition of variable names and defining expression:

(define-fun <symbol> ((<symbol> <sort-expr>)*) <sort-expr> <expr>)
The response to the command is either

37

• success - in which case the new function symbol is now part of the current scope
• error -

– if the command is malformed
– if the command is used before a set-logic command
– if the symbols used in the definition of the new function symbol are themselves not

yet defined (so no recursion is allowed)
– if the symbol being declared is already defined
– if the defining expression is not well-sorted

The symbol introduced by a define-fun command is simply an abbreviation. One could always
substitute uses of the symbol by instances of the defining expression, with the parameters substi-
tuted with the actual arguments (renaming variables where necessary to avoid variable capture by
forall, exists, or let expressions). The goal of using such abbreviations is to simplify expressions
for the human reader and, perhaps, for the solver.

3.9.5 Asserting logical statements: the assert command

The assert command instructs the solver to assume that the stated formula is true. The form of
the command is

(assert <expr>)
in which <expr> is a properly constructed, well-sorted SMT-LIB expression, whose sort is Bool
(cf. section 3.7).

An assert command may not appear before a set-logic command, since the logic is needed
to provide the definitions of the sort and function symbols used in the expression.

An assert command responds with either

• success - in which case the new assertion is now part of the solver context
• an error message -

– if the command is malformed
– if the command is not well-sorted, e.g. the sort of the whole expression is not Bool
– if the command is misplaced (e.g. before a set-logic command)
– if the expression is not allowed in the current logic

3.9.6 Checking satisfiability: the check-sat command

The main purpose of a SMT solver is to check the satisfiability of a set of asserted expressions.
Once a series of assert commands have been made, the check-sat command will instruct the

38

solver to test for satisfiability. The command has a simple form:
(check-sat)

The command may respond with one of three responses:

• sat : the set of assertions is satisfiable. That is, there is a consistent set of assignments of
values to constants and function symbols under which all asserted expressions are true. In
this case, the get-assignment and get-value commands may be used to find out more
about the satisfying assignment.

• unsat : the set of assertions is unsatisfiable. That is, there is no set of assignments of
values to constants and function symbols under which all asserted expressions are true. In
this case, the get-proof and get-unsat-core commands may be used to find out more
about the unsatisfiable assertions.

• unknown : solver cannot determine for sure whether the set of assertions is satisfiable or
not. There may be various reasons for this. In some cases, the solver may have run out of
memory or time. In others, the solver may have found a set of assignments that appears
to make all asserted expressions true, but it cannot be sure because of the presence of
quantified assertions. The :reason-unknown info item (section 3.9.12 below) can be used
to ask for more information about why the solver responds with unknown.

The command will respond with an error if there are any arguments to the command or the
command precedes a set-logic command.

3.9.7 sat operations: get-value and get-assignment

When the (check-sat) operation produces a sat response, then we know that the set of all
the current assertions is satisfiable. With some assignment of values to the free constant and
function symbols, all the asserted formulae are true. There are two (optional) commands that
enable determining the values that make up the assignment: get-value and get-assignment.
These commands may only be used under these conditions:

• for get-assignment, the :produce-assignments option must have been set to true
(which is not the default) before the set-logic command;

• for get-value, the :produce-models option must have been set to true (which is not the
default) before the set-logic command;

• a (check-sat) command must have been given to the solver, and the most recent such
command must have returned either sat or unknown (it is optional for a solver to support
these commands when unknown is returned);

39

• since the most recent (check-sat) command, no push, pop, assert, declare-fun,
define-fun, declare-sort, or define-sort command has been issued.

The command will respond with an error if there are any arguments to the command or the
command precedes a set-logic command.

get-value

The get-value command takes one argument that is a parenthesized list of terms and responds
with the values of those terms under the current assignment. Note that there may be more than one
satisfying assignment; with the same set of asserted formulae, on two different occasions with
the same or different ordering of terms, different values for the arguments might be produced.

The terms in the get-value command must be quantifier-free terms without new function (or
constant) symbols; that is, the terms are ground terms using only the function (and constant)
symbols already defined. More specifically, each theory defines the set of values that belong to
each sort; for example, the values for the Int sort are <numeral>and (- <numeral>) (for a
non-zero <numeral>). The values supplied by the get-value command are given in terms of
these basic values for each sort, or in terms of unspecified abstract values.

The response to the command is a parenthesized list of parenthesized pairs, one pair for each term
listed in the get-value command; each pair contains the given term and its value. The response
may also be an error message if

• the command is syntactically mal-formed
• any term contains undefined symbols, is not valid for the given logic, or is otherwise not

well-sorted
• there is no sufficiently recent check-sat command that returned sat or unknown
• the :produce-models option is not set to true

The get-value capability is optional. If it is not supported, then the set-option command
applied to :produce-models must return unsupported, and the get-value command will re-
spond with an error. In addition, the solver will respond unsupported to a get-value command
if the most recent check-sat result was unknown and the solver does not support returning model
information for unknown states.

Here is an example, without success responses, presuming the solver supports get-value.

40

> (set-option :produce-models true)

> (set-logic QF_LIA)

> (declare-fun x () Int)

> (declare-fun y () Int)

> (assert (= (+ x y) 9))

> (assert (= (+ (* 2 x) (* 3 y)) 22))

> (check-sat)

sat

> (get-value (x))

((x 5))

> (get-value ((- x y) (+ 2 y)))

(((- x y) 1) ((+ 2 y) 8))

get-assignment

The get-assignment command also responds with a list of assignments: the (sub-)terms whose
values are returned are those with Bool sort that are named at the time they are asserted. A term
is named using this syntax (cf. section 3.7):

(! <expr> :named <symbol>)
In general, the named term may be a sub-term or may be the entire asserted formula. However,
the get-assignment command only returns the truth assignment of named terms or subterms of
sort Bool.

The form of the get-assignment command is simply
(get-assignment)

The response to the command is a parenthesized (S-expression) list of zero or more pairs, one
pair for each named asserted formula or named subterm of Bool sort in the current solver con-
text; each pair contains the <symbol> naming a formula and its value (either true or false, as
symbols). The response may also be an error message if

• the command is syntactically malformed
• there is no sufficiently recent check-sat command that returned sat

• the :produce-assignments option is not set to true

The get-assignment capability is optional. If it is not supported, then the set-option com-
mand applied to :produce-assignments must return unsupported, and the get-assignment
command must respond with an error. In addition, the solver will respond unsupported to a
get-assignment command if the most recent check-sat result was unknown and the solver
does not support returning model information for unknown states.

41

Here is a simple example:

> (set-option :produce-assignments true)

success

> (set-logic QF_UF)

success

> (declare-fun p () Bool)

success

> (declare-fun q () Bool)

success

> (declare-fun r () Bool)

success

> (assert (not (=> (or (! p :named P) (! q :named Q)) (! r :named

R))))

success

> (check-sat)

sat

> (get-assignment)

((P true)(Q true)(R false))

In the example, the response to get-assignment says that when p and q are true and r is false,
then the asserted expression is true, that is, then (p∨q)⇒r is false.

3.9.8 unsat operations: get-proof and get-unsat-core

Proofs

When the (check-sat) operation produces an unsat response, then we know that the set of all
the current assertions is unsatisfiable. Equivalently, all of the assertions but the last together imply
the negation of the last assertion. This is, in fact, a common method of determining whether a set
of assertions, Pi, implies a consequence, Q: assert each of the Pi, then assert ¬Q, and then check
for satisfiability. If not satisfiable, then the implication holds.

However, in that case, we may well want more information: we would like a step-by-step proof
that the implication holds. Some solvers may be able to supply such a proof; if so, the proof can
be obtained using the (get-proof) command.

The (get-proof) capability is optional. If it is supported, then to obtain proofs, the following
conditions must hold:

• the :produce-proofs option must be true (which is not the default); the option may only
set before the set-logic command;

42

• a (check-sat) command must have been given to the solver, and the most recent such
command must have returned unsat;

• since the most recent (check-sat) command, no push, pop, assert, declare-fun,
define-fun, declare-sort, or define-sort command has been issued.

If the get-proof capability is not supported, then the set-option command applied to :produce-proofs
must return unsupported and the get-proof command must respond with an error.

The form of the command is simple:
(get-proof)

The response to the command is one of these:

• a proof - The form of the proof is not specified by the SMT-LIB standard, except that the
concrete syntax of the result must be an S-expression.

• an error response -

– if the command is malformed (e.g. has arguments)
– if there is no sufficiently recent check-sat command that returned unsat

– if the :produce-proofs option is not set to true

Here is an example of using a solver to check the truth of ((p⇒q)∧q⇒r))⇒(p⇒r) (presuming
the solver supports proof generation):

> (set-option :produce-proofs true)

success

> (set-logic QF_UF)

success

> (declare-fun p () Bool)

success

> (declare-fun q () Bool)

success

> (declare-fun r () Bool)

success

> (assert (=> p q))

success

> (assert (=> q r))

success

> (assert (not (=> p r)))

success

> (check-sat)

unsat ; (=> p r) is always true, given the previous assertions

> (get-proof)

Solver-dependent output

43

Unsatisfiable cores

Another interesting question about an unsatisfiable set of assertions is which assertions in that set
are actually causing the contradiction that makes the set unsatisfiable. Such a set, ideally smaller
than the full set, but still unsatisfiable, is called an unsatisfiable core. One might even want
a minimal unsatisfiable core.7 The get-unsat-core command responds with an unsatisfiable
core, though the core is not necessarily minimal. In fact, it might provide the unhelpful result of
listing all of the named formulae.

The command takes no arguments and so has the simple form
(get-unsat-core)

It is subject to similar restrictions as the (get-proofs) command. If it is supported, then to
obtain an unsatisfiable core, the following conditions must hold:

• the :produce-unsat-cores option must be true (which is not the default); the option
may only be set before the set-logic command;

• a (check-sat) command must have been given to the solver, and the most recent such
command must have returned unsat;

• since the most recent (check-sat) command, no push, pop, assert, declare-fun,
define-fun, declare-sort, or define-sort command has been issued.

If the get-unsat-core capability is not supported, then the set-option command applied to
:produce-unsat-cores must return unsupported, and the get-unsat-core command must
respond with an error.

An error response may occur

• if the command is malformed (e.g. has arguments)
• if there is no sufficiently recent check-sat command that returned unsat

• if the :produce-unsat-cores option is not set to true

The successful result of the command is a list of formulae, identified by their names (which are
<symbol>s). Formulae are given names when they are asserted (for this command, names of any
subterms are ignored). For example, one might issue this command to a solver:

(assert (! (or p q) :named FORMULA1))

The exclamation point is the annotation operator, indicating that the term that is the first argument
has the annotations given in the rest of the S-expression (cf. section 3.7). Note that the name of
the term is a <symbol>, not a <string>. Only top-level formulae with names are listed in the

7It is a computationally hard problem to find minimal unsatisfiable cores; solvers that do provide unsat cores
generally do not guarantee minimality.

44

output of the (get-unsat-core) command; unnamed formulae are simply not listed, whether
or not they are part of the unsatisfiable core.

The rule about naming formulae serves two purposes. First, it allows the user to be selective
about which formulae to track, avoiding what might be extraneous information; second, it allows
an implementor to know which formulae need to be tracked, allowing potential optimizations.
However, if the user forgets about the distinction between named and unnamed formulae, it may
appear that the solver has produced an unsatisfiable core that is in fact satisfiable; in effect, the
unsatisfiable core must be considered to include all of the unnamed formulae.

Here is a simple example (without success responses) that presumes the solver supports pro-
ducing unsatisfiable cores:

> (set-option :produce-unsat-cores true)

> (set-logic QF_UF)

> (declare-fun p () Bool)

> (declare-fun q () Bool)

> (declare-fun r () Bool)

> (declare-fun s () Bool)

> (declare-fun t () Bool)

> (assert (! (=> p q) :named PQ))

> (assert (! (=> q r) :named QR))

> (assert (! (=> r s) :named RS))

> (assert (! (=> s t) :named ST))

> (assert (! (not (=> q s)) :named NQS))

> (check-sat)

unsat

> (get-unsat-core)

(QR RS NQS)

The names of the formulae in the unsatisfiable core may be in any order, and may include other
names, but should include at least these three.

3.9.9 Adding scope: the push and pop commands

The push and pop commands enable some scoping of sort and function declarations and of
assertions. In effect, a solver maintains a single, global stack of sets of assertions. The stack
is initialized with one empty assertion set; that assertion set is, initially, the top set on the stack.
Declaration, definition and assert commands add new declarations, definitions and assertions to
the top assertion set of the stack.

The forms of the commands are
(push <numeral>)

45

(pop <numeral>)
Recall that a <numeral> is always non-negative. If <numeral> is zero, the command is legal
but has no effect.

A push operation adds the given number of new empty assertion sets to the top of the stack,
with the last one added becoming the new top assertion set and the new recipient of declarations,
definitions, and assertions. A push command with argument n is precisely equivalent to n (push

1) commands.

A pop operation removes the given number of assertion sets from the stack, beginning with the
top-most, in reverse order of being pushed. It is as if the commands that placed declarations,
definitions, and assertions in those now popped sets had never happened.

The check-sat and get-assertions commands always operate on the union of all of the as-
sertion sets on the stack at the time of the command.

It is an error to pop off more assertion sets than have been added; it is not permitted to pop the
assertion set with which the stack is initialized; thus there is always an assertion set to receive
new declarations, definitions, and assertions. The push and pop commands are not permitted
prior to a set-logic command. Note that if the argument to a pop command is too large, an
error response is given, and no assertion sets are popped; this behavior is consistent with the rule
that if a command responds with an error then the state of the solver is unchanged.

The push and pop commands provide a scope for declarations, definitions, assertions, and names
of expressions within assertions. The commands do not affect the setting of options (set-option)
or information items (set-info).

The responses to push and pop are either

• success

• an error response

– if the command is malformed, e.g. anything other than just one argument that is a
<numeral>

– if the argument to a pop command is more than the current net number of pushed
assertion sets

– if the command precedes a set-logic command

A very large argument to the push command risks exhausting resources, depending on the solver
implementation.

The push and pop commands are typically used to try various experiments on a set of assertions

46

(success responses are omitted).

> (set-logic QF_LIA)

> (declare-fun x () Int) ; declare some constants

> (declare-fun y () Int)

> (declare-fun z () Int)

> (push 1)

> (assert (= (+ x y) 10))

> (assert (= (+ x (* 2 y)) 20))

> (check-sat)

sat ; there is a solution

> (pop 1) ; clear the assertions

> (push 1) ; ready for another problem

> (assert (= (+ (* 3 x) y) 10))

> (assert (= (+ (* 2 x) (* 2 y)) 21))

> (check-sat)

unsat ; no solution

> (declare-fun p () Bool)

> (pop 1)

> (assert p)

(error "p is not declared") ; the declaration of p was popped

3.9.10 Remembering what you have done: the get-assertions command

The get-assertions command simply responds with all of the expressions in the current as-
sertion set stack. It has this simple form:

(get-assertions)

The response is a parenthesized list of all of the asserted expressions (but not the declarations or
definitions8). Each element of the response is an expression. The expression must be identical
(except for whitespace and comments)9 to the expression in the original assert command: no
normalization of the expression, reordering of arguments, flattening of associativity, substitution
of definitions, or any other rearrangement is allowed. The purpose of the command is simply to
replay back to the user the current list of expressions as the user asserted them. Note that the re-
turned list of expressions may be empty or may have just one expression; it is still parenthesized.

The command is optional. If it is not supported, the solver should respond unsupported.

8This limitation is for simplicity, but it does mean that the get-assertions command cannot be used to obtain
and replay the entire contents of the assertion set stack.

9Including the original whitespace and comments is permitted, but not required.

47

The command is only valid if the :interactive-mode option is true; that option may only be set
before the set-logic command. If this is not the case, the response to the command should be an
error message. The get-assertions command itself may not precede a set-logic command.

Here is an example (success responses are omitted):

> (set-option :interactive-mode true)

> (set-logic QF_UF)

> (declare-fun p () Bool)

> (declare-fun q () Bool)

> (push 1)

> (assert (or p q))

> (push 1)

> (assert (not q))

> (get-assertions)

((or p q)

(not q)

) ; solvers will vary in the whitespace used

> (pop 1)

> (get-assertions)

((or p q)) ; just one assertion

> (pop 1)

> (get-assertions)

() ; no assertions left

3.9.11 Options

The option mechanism allows the user to change the behavior of the solver in some ways. Some
options are required to be supported by a conforming solver and some options are pre-defined but
optional; if a solver does not recognize an option it is required to respond unsupported, rather
than issuing an error or faulting.

Setting and retrieving option values is independent of the assertion stack. The setting of an option
is not changed by a pop command (or anything other than a set-option command).

The set-option and get-option commands

The set-option command sets the value of a specified option; the get-option command re-
trieves the current setting of a given option. The values of options are in general S-expressions,
but for all the pre-defined options the values are either a <string>, a <numeral>, or one of the

48

<symbol>s true or false. The two commands have this form:
(set-option <keyword> <attr-value>)

(get-option <keyword>)

The set-option command will respond with one of these responses:

success - the value of the option was successfully changed
unsupported - the option is optional and is not supported by the solver
(error <string>)

– if the command is malformed (e.g. incorrect number or kind of arguments)
– if the option value is inappropriate for the keyword
– if the option is being set at the wrong place in a command script (e.g. after set-logic

when it should be before set-logic)

The get-option command may also respond with unsupported or an error, but normally will
respond with an S-expression giving the value of the option.

For example:

> (get-option :print-success)

true

> (set-option :print-success false)

> (get-option :print-success)

false

> (set-option :print-success true)

success

Options defined by standard SMT-LIB

There are a number of options that conforming solvers are required to support and others that are
optional but pre-defined.

49

Option name required? type of value default value
:print-success required boolean true
:regular-output-channel required string "stdout"
:diagnostic-output-channel required string "stderr"
:expand-definitions optional boolean false
:interactive-mode optional boolean false
:produce-proofs optional boolean false
:produce-unsat-cores optional boolean false
:produce-models optional boolean false
:produce-assignments optional boolean false
:random-seed optional numeral 0
:verbosity optional numeral 0

:print-success – The :print-success option controls whether success is printed after
successful commands. The default is to print success as a response. In interactive mode, this
is the more convenient setting, as the user obtains direct feedback that the command completed
successfully. However, in batch mode and even as a less verbose option in interactive mode, it
may be desirable to set this option false. Note that any response other than success is always
output. The value of this option may be changed at any time, with immediate effect.

:regular-output-channel and :diagnostic-output-channel – These two options con-
trol where output from the solver to the user is sent. The :regular-output-channel is the des-
tination for all defined messages from the solver: success responses, error messages, and other de-
fined outputs from the various commands. These responses are always formed as S-expressions.
The :diagnostic-output-channel only receives output controlled by the :verbosity option.
The format and content of that output is specific to the solver.

The output is sent to

• the standard output of the process, if the value of the option is the string "stdout"
• the standard error output of the process, if the value of the option is the string "stderr"
• to a file if the value of the option is some other string, in which case the string must be the

path to a file (relative to the current working directory, if the path is relative). A conforming
solver must accept a file path in POSIX form, with forward-slash characters separating
components of the path.

In this last case, a set-option command setting the value of one of the output channels will
return an error if file designated by the path cannot be created (if it does not exist) or cannot be
written to. If the file already exists, new output will be appended to the file; if the file does not
exist, it will be created.

This option may be changed at any point in a script, with immediate effect.

50

:expand-definitions – This option affects the presentation of expressions from the solver.
When the option is set to true, all symbols defined with define-sort or define-fun are sub-
stituted with their definitions; these symbols (which are just abbreviations) should not appear in
the output. It may be set at any point in a script.10 The only commands that respond with expres-
sions are get-assertions, get-value, and get-proof. The response to get-assertions is
unchanged by this option; it always responds with expressions just as the user asserted them. The
expressions in a proof produced by (get-proof) are affected by this option. The get-value

command responds with expression-value pairs; values never contain abbreviation symbols in
any case, but the user-specified expressions whose values are generated may well — the presen-
tation of these expressions in the command response is affected by the :expand-definitions

option.

Here is an example with :expand-definitions true and false:

> (set-option :produce-models true)

> (set-logic QF_LIA)

> (declare-fun x () Int)

> (declare-fun y () Int)

> (define-fun diff () Int (- x y))

> (assert (= (+ x y) 9))

> (assert (= (+ (* 2 x) (* 3 y)) 22))

> (check-sat)

sat

> (set-option :expand-definitions false)

> (get-value (diff))

((diff 1))

> (set-option :expand-definitions true)

> (get-value (diff))

(((- x y) 1))

:interactive-mode – This option must be set true in order for the get-assertions com-
mand to be issued. It must be set before set-logic.

:produce-assignments, :produce-models, :produce-proofs, :produce-unsat-cores –
These four options enable the get-assignment, get-value, get-proof, get-unsat-core
commands, respectively. For each option-command pair, the following hold:

• it is optional for a solver to support the capability provided by the command

10The standard does not actually specify when it may be set.

51

• if the capability is supported, then to use the command during a script, the option must be
set to true prior to the set-logic command

• if the capability is not supported, then attempting to set the value of the option (to either
true or false) should result in an unsupported response

• if the capability is not supported or the option has not been set to true, then the response
to the command should be an error message

It is an error to attempt to set any of these options after the set-logic command.

:verbosity – The :verbosity option is a numeral that controls the volume of diagnostic
output. When set to 0, no diagnostic output should be produced. Generally, increasingly larger
values should produce increasing amounts of detail, but the amount, content, and format of the
output is entirely solver-specific. The value of the option may be changed at any point in a
command script. All output controlled by this option must be sent to the diagnostic-output-
channel.

:random-seed If a solver has some element of random selection in its processing and it sup-
ports the :random-seed option, then it should use the value of the option to set the seed used for
its internal pseudo-random choices. If the value of :random-seed is 0, then the solver should
choose a more or less arbitrary seed according to its internal logic and the seed may be different
for each execution of the solver. However, if the value of the option is a positive integer, then
the solver should always make the same internal choices for the same value of the seed. Thus,
repeatedly setting the seed to the same positive value should always produce the same output for
the same input with the same internal search choices being made.

If :random-seed is not supported, the behavior of the solver is as if the value were 0.

3.9.12 Solver information

The get-info command provides a way to retrieve items of information about the solver being
used. Info items are different than options in that options change the behavior of the solver, while
info items merely provide information about the solver or about the solver state. The information
may, however, be dynamic; that is, it may change depending on the current state of the solver.

There are several predefined items of solver information. In addition a solver may define other,
non-standard items and a user may use arbitrary keywords to add other information items. User-
contributed information items function simply as meta-data; they do not affect the solver at all —
they are merely stored and retrieved.

52

Solver information items are identified by a <keyword>. A solver must respond to any request
for an information item that it does not support with the unsupported response. The response
to a get-info command is one of

• a parenthesized S-expression containing one or more attributes
• unsupported – if the solver does not support that information item
• an error response

– if the command is malformed (e.g. has the wrong number or kind of arguments)

Note that the response to a get-info command is always parenthesized and contains the <key-
word> that was given in the command; also the response may contain more than one attribute.
This is a different format than produced by the get-option command.

SMT-LIB-defined or solver-defined information items may have a restriction on the kind of S-
expression that the information item value may have. For example, the :version information
item requires a <string> as its value. In general, user-defined information items may have arbi-
trary <attr-value> items as their value.

Required info keywords defined by SMT-LIB

These are the pre-defined information keywords that a conforming solver must support.

:name replies with the name of the solver, as a pair: (:name <string>)

:authors replies with the authors of the solver, as a pair: (:authors <string>) . Note
that the value is a single <string> containing all the authors names, not multiple <string>s
each containing one name.

:version replies with the version of the solver, as a pair: (:version <string>)

For example

> (get-info :name)

(:name "TheBestSolverEver")

> (get-info :version)

(:version "1.0")

> (get-info :authors)

(:authors "David R. Cok")

53

Optional info keywords defined by SMT-LIB

These are the pre-defined information keywords that a conforming solver must either support or
respond to with unsupported.

:error-behavior replies with the error behavior of the solver. The defined values are these:

immediate-exit - if the solver has this behavior, then if a command responds with an error
message for any reason, the solver will output the error message and then exit, ignoring the
rest of the script. This behavior is perhaps best for batch execution, but it then reports only
one error at a time. A script command and type checker, as described in section 6.1.1,
might be useful for finding syntax and usage errors before submitting a script to a batch
process.
continued-execution - if the solver has this behavior, then upon encountering an error,
the error message will be output, but the command will cause no change to the state of the
solver, and the solver will proceed to execute the next command in the script. Interactive
execution will prefer this second behavior, since then a mistyped command will not cause
the immediate exit of the solver; the user will have the chance to correct the command,
not losing all previous work. However, in many cases, the user will edit a file containing
a script and submit the file to the solver, rather than typing into the solver directly (just as
one does not generally type directly into a compiler).

:reason-unknown replies with more detail about why the solver responded to a (check-sat)

command with the reply unknown. The defined values of this info item are

memout - meaning the solver ran out of memory and therefore could not complete its anal-
ysis
incomplete - meaning the satisfying assignment found cannot be assured to be complete
(cf. section 3.1.2)

This option is defined only after a (check-sat) command that has returned unknown and before
any subsequent define, declare, assert, push or pop commands. Other values (e.g. timeout) may
be standardized in the future.

:all-statistics replies with the values of a number of solver-specified statistics about the
current state of the solver. The content is not defined by SMT-LIB (yet). This information
item in particular may respond with a number of different <keyword>-<attr-value> pairs, giving
different statistics. The option need be available only after a (check-sat) command without
intervening declaration, definition, push, pop or assert commands.

Note: The :status information item, defined in some editions of the SMT-LIB standard, has
been deprecated as an SMT-LIB-defined argument to get-option.

54

It is currently unspecified what the value of a user-defined information item is before it is set with
set-info.

3.9.13 The set-info command

The set-info command may only be used with user-defined information keywords; SMT-LIB-
defined information items may not be reset by the user.11

The form of the command is

(set−info < keyword > < S− expression >).

The set-info command replies with one of

• success

• unsupported

• (error <string>)

The only occasion for an error response is if the command is malformed or the option is not
writable. For example

> (set-info :version "1.1")

(error "The value of :version may not be set by set-info")

> (set-info :zzz 1.1)

success

> (set-info)

(error "The set-info command requires an argument")

> (get-info :zzz)

(:zzz 1.1)

11The rules about the set-info command are under discussion. It is currently unspecified what the value of an
info-item is before it is set.

55

Chapter 4

Logics and Theories

For the most part, an SMT-LIB user need only know about logics in order to choose the appro-
priate one for the problem to be solved and to know the symbols defined in that logic. Each
logic (and accompanying theories) have a definition and description given in a corresponding
file. Inspecting that definition can be instructive.

A theory defines a vocabulary of sorts and functions, and it associates a sort with relevant lit-
erals. For example, the Ints theory defines the Int and Bool sorts and declares that any <nu-
meral> has sort Int. A logic is defined to consist of one or more theories, together with some
restrictions on the kinds of expressions that may be used within that logic. For example, the
QF_LIA logic includes both the Core and Ints theories. Those theories define many of the usual
operations on Bool and Int values. However the QF_LIA logic does not allow quantified expres-
sions and allows only linear arithmetic (e.g. multiplication must be by a literal — one cannot
multiply two non-literals together). Logics have such restrictions because there are known deci-
sion procedures that can solve satisfiability problems in those logics.

In the following subsections we will simply summarize the salient points about the various the-
ories and logics in SMT-LIB. The interested reader can find a wealth of literature on decision
procedures relevant to the different logics. The reader may also wish to consult the text files that
define the logics and theories; these are available from the SMT-LIB website[6].

Not all of a logic or theory definition is machine-interpretable. Consequently. logics are actually
built-in to solvers rather than the solvers acting only on the contents of the definitions in the logic
and theory files. Nevertheless the textual description serves as a standard definition of a logic or
theory’s symbols that all SMT-LIB solvers will uniformly implement.

56

4.1 Theories

4.1.1 Definition of a Theory

Theories are defined using specialized S-expressions:
(theory <symbol> <attribute>+)

where the <symbol> is the name of the theory and the attributes (either <keyword>s or <keyword>-
<attr-value> pairs) give properties of the theory.

Many of the attributes are descriptive. The following are currently machine-interpretable:

• :smt-lib-version – whose value must currently be the SMT-LIB string "2.0"

• :sorts – whose value must be a list of sort definitions provided by the theory. For example,
Core has :sorts ((Bool 0)) and Reals_Ints has :sorts ((Int 0) (Reals 0)).

• :funs – whose value is a list of function declarations, each one of which is a list contain-
ing the function name, argument sorts, result sort, and optional attributes. Here are some
examples:

(false Bool)

(or Bool Bool Bool :left-assoc)

(<= Int Int Bool :chainable)

Commonly used descriptive attributes are these (the attribute values are all <string>s):

• :funs-description – informally specified functions (in addition to those in :funs)
• :sorts-description – informally specified sorts (in addition to those in :sorts)
• :definition – an informal specification of the allowed expressions in the theory (there

must be exactly one :definition attribute)
• :values – the expressions that constitute the ground values of the theory’s sorts
• :written_by – the author of the theory
• :date – the initial date the theory was defined
• :notes – other explanatory text
• :last-modified – the date of the most recent modification to the theory

The SMT-LIB theories are defined in files that are available as part of the SMT-LIB distribution.
Each theory is contained in a file whose name is the same as the theory, along with a .smt2 file
extension. Every theory implicitly contains the Core theory, which defines propositional logic.

4.1.2 Core theory

The Core theory contains the basic elements of Boolean logic. It defines

57

• the Bool sort
• the constants true and false of sort Bool
• the not operation
• the familiar left-associative functions and and or and xor (for conjunction and disjunction

and inequality) on Bool values
• the right-associative function =>, which is implication
• the (chainable) equality function among the elements of any set of values of the same sort
• the (pairwise) inequality function (called distinct) among the elements of any set of

values of the same sort
• the if-then-else functions (called ite), which take a first Bool argument and two additional

arguments of the same but arbitrary sort

4.1.3 Ints theory

The Ints theory contains the basic elements of integer arithmetic. The following are defined:

• the Int sort
• all <numeral>s as Int constants
• the usual + - * mod div abs functions. The - symbol is used both for negation (with

one argument) and for subtraction (with two or more arguments, left associative). The div
operation denotes integer division. The mod and div functions satisfy

(= x (+ (* y (div x y)) (mod x y)))

(in infix: x = y * (x div y) + (x mod y)), for integers x and y, with y non-zero. In
addition, (mod x y) is non-negative and less than the absolute value of y.

• the usual < > <= >= comparison functions, returning a Bool.
• for each non-zero numeral n, there is a function (_ divisible n) that takes a single
Int argument and is true precisely when n divides the argument.

4.1.4 Reals theory

There is both a theory for Reals and a combined Reals_Ints theory. The Reals theory contains
the following:

• a sort Real
• both <numeral>s and <decimal>s are typed as Real
• the expected + - * / functions
• the expected < > <= >= comparison functions, returning Bool

58

4.1.5 Reals_Ints theory

The combined theory of Reals and Ints is not quite the same as the union of the definitions from
the two individual theories. In particular

• both the sorts Int and Real are defined
• <numeral>s are of sort Int and <decimal>s are Real
• the functions + - * div mod abs < > <= >= and the family of divisible functions

are defined for Int arguments
• the functions + - * / < > <= >= are defined for Real arguments
• the function to_real that maps Int arguments to the corresponding Real

• the function to_int that maps a Real argument to the largest integer less than or equal to
the argument (the floor function)

• the function is_int that maps a Real to a Bool and is true just for those arguments that
are equal to (to_real n) or to (to_real (- n)) for some numeral n

4.1.6 ArraysEx theory

The theory of Arrays defines a parameterized sort and functions to read and write elements of
arrays.

• the new sort symbol Array that takes two sort parameters: the first is the sort of the index,
the second is the sort of the value of the array elements.

• the function select that extracts values from the array. It is a parameterized function.
Its arguments are (1) the array, of sort, say, (Array Index Value), with sort parameters
Index and Value, and (2) the index value, of sort Index. The result is a value of sort
Value.

• the function store that produces a new array with a modified value at a given index. It
takes three arguments: the array, of sort (Array Index Value); the index, of sort Index;
and the new value for that index, of sort Value. The result is a new array with that one
value changed.

• two values of the same Array sort are equal if the array elements are equal for every value
of the index sort.

4.1.7 Fixed_Size_BitVectors theory

The final pre-defined theory describes the behavior of bit-vectors. A different bit-vector sort is
defined for each length of vector. Operations are defined to manipulate, combine, and extract

59

portions of bit-vectors. Some of the operations interpret the bit-vector as a natural number: the
bit-vector is considered to be an unsigned binary representation of a non-negative integer, with
the least significant bit on the right.

• a sort (_ BitVec n) is defined for each non-zero numeral n

• the binary and hexadecimal literals are defined to have a bit-vector sort of the corresponding
length

• the function concat is defined that combines two bit-vectors into a longer one

• a family of functions (_ extract i j) is defined that extracts a contiguous sub-vector
from index i to j (inclusive) of a bit-vector

• unary functions bvnot and bvneg

• binary functions bvand bvor bvadd bvmul bvudiv bvurem bvshl bvlshr

• the binary comparison function bvult

4.2 Logics

4.2.1 Definition of a logic

An SMT-LIB command involving assertions is always interpreted and executed in the context of
a logic. The relevant logic is set by the (set-logic <symbol>) command. A logic defines,
by way of the theories it includes, all the sorts and function and constant symbols that make up
the initial set of definitions. The logic also may restrict the expressions that are allowed. (Later
subsections contain a quick overview of the SMT-LIB defined logics.) For example, the QF_UF

(Quantifier-Free with Uninterpreted Functions) logic defines the following:

• the sort Bool
• the constants true and false of sort Bool
• the unary function not from Bool to Bool

• the functions and, or, xor, and => that take two or more Bool arguments, producing Bool

• equality (=), pair-wise distinct (distinct) and if-then-else (ite) functions
• restricts expressions to be quantifier-free

A logic is defined using, as usual, an S-expression of a particular form:
(logic <symbol> <attribute>+)

Here the <symbol> is the name of the logic and <attribute>+ indicates one or more attributes,

60

each of which is a <keyword> or <keyword>-<attr-value> pair. Some of the attributes are
simply descriptive; they provide information such as the author of the logic. Other attributes
are an informal part of the definition of the logic; they are not machine-interpretable and their
prescriptions must be built-in to a conforming tool. Two attributes are machine-interpretable and
are important to solvers:

• :smt-lib-version – whose value must at present be the SMT-LIB string "2.0"

• :theories – whose value must be a parenthesized list of theory names. These are the
theories that make up the logic. There must be exactly one :theories attribute in the
definition. For example, the value of :theories for QF_UF is simply (Core) and for
AUFLIA is (Ints ArraysEx). Every theory (and thus every logic) implicitly includes the
Core theory.

Other commonly used, descriptive attributes are these (the attribute values are all <string>s):

• :written_by – the author
• :date – the date the logic was first written
• :language – a description of the restrictions on expressions that constitute the language

of the logic
• :notes – additional explanatory text
• :values – the ground expressions of the logic
• :extensions – syntactic sugar that extends the language of the logic

The SMT-LIB logics are defined in files that are available as part of the SMT-LIB distribution.
Each logic is contained in a file whose name is the same as the logic, along with a .smt2 file
extension. Although the currently defined logics are informally described here, the definition
files are the official reference on the details of the logic.

4.2.2 Boolean logics

QF_UF is the logic of Quantifier-Free Uninterpreted Functions. It incorporates just the Core

theory, providing the Bool sort and the various standard operations on Boolean values. The user
may define additional sorts and uninterpreted functions. The restriction imposed by the logic is
that no quantified expressions are allowed.

4.2.3 Logics with arithmetic

QF_LIA adds linear arithmetic to the QF_UF logic. So the Int sort is defined, along with the
operations defined in the Ints theory. This logic does not permit quantified expressions. It is also

61

limited to linear arithmetic. Thus addition, negation, subtraction and comparisons are permitted;
multiplication is permitted only if one multiplicand is a numeral (a constant). No additional sorts
or functions are defined.

QF_NIA incorporates the Ints theory, but without the linearity restriction. It does not allow
quantified expressions, but any of the functions defined in Ints are permitted. No additional
sorts or functions are defined.

QF_LRA adds linear arithmetic over the reals to the QF_UF logic. So the Real sort is defined,
along with the operations defined in the Reals theory. This logic does not permit quantified
expressions and is limited to linear arithmetic. Thus addition, negation, subtraction, and compar-
isons are permitted; multiplication is permitted only if one multiplicand is a Real literal (either a
<numeral> or a <decimal>). No additional sorts or functions are defined.

QF_AUFLIA extends the QF_LIA linear arithmetic logic, with the addition of arrays and arbi-
trary uninterpreted sorts and functions.

AUFLIA extends QF_AUFLIA by allowing quantifiers.

AUFLIRA allows quantifiers and includes Int and Real sorts, but is limited to linear arith-
metic.

AUFNIRA allows quantifiers and general Int and Real arithmetic, arrays, and uninterpreted
functions.

LRA simply extends QF_LRA by allowing quantifiers.

4.2.4 Logics for difference arithmetic

Difference arithmetics only allow either comparisons between numeric values or comparisons of
a difference between two numeric values to a positive or negative numeric literal.

QF_IDL is a difference logic over Ints that does not allow quantifiers

62

QF_RDL is a difference logic over Reals that does not allow quantifiers

QF_UFIDL is difference logic over Ints that does not allow quantifiers but does permit arbi-
trary additional sorts and uninterpreted function symbols

4.2.5 Logics with Bit-Vectors and Arrays

QF_BV allows quantifier-free expressions, including the family of bit-vector sorts and all of the
functions defined in the Fixed_Size_BitVectors theory (but no other new sorts or functions).

QF_AX includes Booleans, Arrays (from the ArraysEx theory), and arbitrary additional sorts
and constants (but not functions), with quantifier-free expressions

QF_ABV includes quantifier-free expressions over Booleans, Arrays and BitVectors, with all
array index and value sorts being bit-vector sorts.

QF_AUFBV extends the QF_BV logic with arrays, arbitrary sorts and function symbols

63

Chapter 5

SMT solvers

This chapter presents a brief mention of a number of SMT solvers. I will be happy to include
any SMT solver that is currently maintained, under active development, and can be obtained for
assessment and use. In this version of the tutorial, we simply list candidates; assessments of
conformity to SMT-LIB will follow in subsequent versions. The SMT-COMP competitions were
executed in Linux, so those solvers will run on Linux but may not have Windows equivalents.
Some of the solvers listed may require licenses from the authors or their institutions.

• Solvers competing in the SMT-COMP 2010. That competition used SMT-LIB and these
solvers were required to handle at least assert and check-sat commands in batch mode.
(http://www.smtexec.org/exec/competitors2010.php)

– AProVE NIA 0.2.1 : http://aprove.informatik.rwth-aachen.de/

– CVC3 2.3 : http://cs.nyu.edu/acsys/cvc3/

– CVC4 1.0a0 : http://cs.nyu.edu/acsys/cvc4/

– MathSAT 5 : http://mathsat4.disi.unitn.it/

– MiniSMT : http://cl-informatik.uibk.ac.at/software/minismt/

– OpenSMT-1.0-alpha : http://www.verify.inf.unisi.ch/opensmt

– simplifyingSTP : http://sites.google.com/site/stpfastprover/

– SONOLAR r252 : http://www.informatik.uni-bremen.de/~florian/sonolar/

– test_pmathsat 0.0.5 : relative of MathSAT

– veriT 201007 : http://www.verit-solver.org/

• Other older solvers that can be executed on Windows OS and for which there are jSMTLIB
adapters. These solvers are not themselves SMT-LIB conforming, but they can be used as
SMT-LIB solvers through the adapters.

64

http://www.smtexec.org/exec/competitors2010.php
http://aprove.informatik.rwth-aachen.de/
http://cs.nyu.edu/acsys/cvc3/
http://cs.nyu.edu/acsys/cvc4/
http://mathsat4.disi.unitn.it/
http://cl-informatik.uibk.ac.at/software/minismt/
http://www.verify.inf.unisi.ch/opensmt
http://sites.google.com/site/stpfastprover/
http://www.informatik.uni-bremen.de/~florian/sonolar/
http://www.verit-solver.org/

– Simplify 1.5.4 (for Windows) : https://mobius.ucd.ie/repos/src/mobius.esc/
escjava/trunk/ESCTools/Escjava/release/master/bin/

– CVC3 2.2 : http://cs.nyu.edu/acsys/cvc3/

– Yices 1.0.28 : http://yices.csl.sri.com/

– Z3 2.11 : http://research.microsoft.com/en-us/um/redmond/projects/z3/

• Other non-SMTLIB solvers from SMTCOMP-2009 that are not subsumed by later versions
(http://www.smtexec.org/exec/competitors2009.php)

– barcelogic-QF_NIA : http://www.lsi.upc.edu/~oliveras/bclt-main.html

– beaver-smtcomp-2009 :
http://uclid.eecs.berkeley.edu/newwiki/beaver/start

– Boolector 1.2 : http://fmv.jku.at/boolector/

– clsat 1.0

– SatEEn-3.5 : http://vlsi.colorado.edu/~hhkim/sateen/

– sword-1.0 : http://www.informatik.uni-bremen.de/agra/eng/sword.php

– Yices 2 proto : http://yices.csl.sri.com/

• Other non-SMTLIB solvers from SMTCOMP-2008 that are not subsumed by later versions
(http://www.smtexec.org/exec/competitors2008.php)

– Alt-Ergo : http://alt-ergo.lri.fr/

– Spear : http://www.domagoj-babic.com/index.php/ResearchProjects/Spear

Details on these solvers will be added in a future edition of the tutorial.

65

https://mobius.ucd.ie/repos/src/mobius.esc/escjava/trunk/ESCTools/Escjava/release/master/bin/
https://mobius.ucd.ie/repos/src/mobius.esc/escjava/trunk/ESCTools/Escjava/release/master/bin/
http://cs.nyu.edu/acsys/cvc3/
http://yices.csl.sri.com/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://www.smtexec.org/exec/competitors2009.php
http://www.lsi.upc.edu/~oliveras/bclt-main.html
http://uclid.eecs.berkeley.edu/newwiki/beaver/start
http://fmv.jku.at/boolector/
http://vlsi.colorado.edu/~hhkim/sateen/
http://www.informatik.uni-bremen.de/agra/eng/sword.php
http://yices.csl.sri.com/
http://www.smtexec.org/exec/competitors2008.php
http://alt-ergo.lri.fr/
http://www.domagoj-babic.com/index.php/ResearchProjects/Spear

Chapter 6

Tools

As SMT-LIB becomes more widely used, increasing numbers of supporting tools and software
packages will become available. Some current tools were generated in conjunction with this
tutorial; others are independently available.

6.1 Tools associated with this tutorial

6.1.1 The SMT-LIB validator

An SMT-LIB validator is available as a tool in conjunction with this tutorial. The tool is an
executable jar, running on Java 1.6. As a validator, the tool reads, parses, and type-checks SMT-
LIB scripts; it is intended to fully and precisely conform to SMT-LIB, except that it does not do
any solving.

It is executed with the command line
java -jar jSMTLIB.jar <file>

where <file> is the path to the script file to check. Information about the command-line options
can be obtained using

java -jar jSMTLIB.jar -help

The tool is available from http://www.grammatech.com/resources/smt/jSMTLIB.tar. The
current version is an alpha release, since some details of the SMT-LIB language are still under
discussion and some aspects of theories and logics are not yet implemented.

Client-server implementation. The validator tool can receive its input directly from a file or
standard input; it can also function as a both client and server, communicating through a network

66

http://www.grammatech.com/resources/smt/jSMTLIB.tar

port.

6.1.2 The SMT-LIB adapters

The jSMTLIB.jar tool discussed in subsection 6.1.1 also contains adapters that convert standard
SMT-LIB input into input specific to some non-SMT-LIB solvers. The Windows versions of Sim-
plify, CVC3 2.2, Yices 1.0.28, and Z3 2.11 are currently supported. To use this feature, you must
have an executable copy of the solver you wish to use. It is then executed by this command-line:

java -jar jSMTLIB.jar �solver <solvername> -exec <path> <file>
Here <solvername> is one of cvc, simplify, yices, or z3 and <path> is the file system path
to the corresponding executable.

The adapters are generally of alpha-release quality; they generally work, but are not necessarily
robust and are missing significant features.

6.1.3 The SMT-LIB Java API

The Java validator application also serves as an API that can be programmatically driven from
a Java application (or any language with a Java interface). This API is tested along with the
validator application.

The jSMTLIB.jar file is the library for the API. The public functions have Javadoc documenta-
tion. A general user guide to the library is being written.

6.1.4 The SMT Eclipse plug-in

The validator application is a command-line tool. There is also an associated Eclipse plug-in. The
internal functionality is the same as that of the command-line tool, since the plug-in is simply a
GUI that drives the command-line tool through the programmatic API. The plug-in will appeal
to those who prefer a GUI text editor for creating and reviewing SMT-LIB scripts. The plug-in
also makes it easy to try different solvers on the same problem.

The plug-in has this functionality:

• A custom text editor associated with the .smt2 file name suffix. The editor’s syntax color-
ing is customized to SMT-LIB scripts.

• The SMT-LIB validator highlights errors in script files using the standard Eclipse problem
mechanism and using a new problem marker that identifies SMT-LIB problems.

67

• The ability to view logic and theory files

• The ability to execute scripts on a chosen solver from the GUI

• A typical Eclipse preference page that permits the user to set the equivalent of command-
line options using the GUI

• An Eclipse Help page

The plug-in can be installed using the standard Eclipse installation mechanism by using this
web-site: http://www.grammatech.com/resources/smt/jSMTLIB-UpdateSite.

6.1.5 SMT validation test suite

The development of the jSMTLIB application, API, and adapters was helped by the complemen-
tary creation of a validation test suite. That suite can be used to compare the behavior of various
solvers that (more or less) conform to SMT-LIBv2.

The suite consists of a number of SMT-LIB command scripts and their corresponding expected
responses. A bash script drives the execution of the scripts, collection of the responses, and
comparisons against the “golden” output. Since there are no standard error messages for invalid
scripts, the only comparison that can be made in those cases is whether or not the solver produced
an error response.

SMT solvers are under active development. Those that participated in SMT-COMP 2010, when
version 2.0 of SMT-LIB had only recently been issued, typically implemented only enough of the
version 2.0 syntax to be able to participate successfully in the competition. Some of these solvers
are actively working to become fully conforming; other development groups will eventually do
so but have other priorities for current development. Thus it was not thought useful to publish
detailed evaluations of individual solvers in this document. A future edition of the tutorial will
include such comments in chapter 5.

The validation suite is available from the author and will be made available by web download
once some currently discussed details of SMT-LIB are resolved.

6.2 Tools from other providers

The SMT-LIB web site (www.smt-lib.org) lists other tools that process SMT-LIB text. The site
currently lists these SMT-LIBv2 parsers:

68

http://www.grammatech.com/resources/smt/jSMTLIB-UpdateSite
www.smt-lib.org

• A C99 parser by Alberto Griggio:
https://es.fbk.eu/people/griggio/misc/smtlib2parser.html

• An OCaml parser by Kyle Krchak and Aaron Stump (downloadable from the Utilities page
of www.smt-lib.org)

• A Haskell parser by Tom Hawkins: http://hackage.haskell.org/package/smt-lib

69

https://es.fbk.eu/people/griggio/misc/smtlib2parser.html
www.smt-lib.org
http://hackage.haskell.org/package/smt-lib

Bibliography

[1] Clark Barrett, Morgan Deters, Albert Oliveras, and Aaron Stump. Design and results of
the 3rd annual satisfiability modulo theories competition (SMT-COMP 2007). International
Journal on Artificial Intelligence Tools (IJAIT), 17(4):569–606, August 2008.

[2] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version 2.0. In
A. Gupta and D. Kroening, editors, Proceedings of the 8th International Workshop on Satis-
fiability Modulo Theories (Edinburgh, England), 2010.

[3] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version 2.0. Tech-
nical report, Department of Computer Science, The University of Iowa, 2010.

[4] Morgan Deters. http://www.smtcomp.org/2010.

[5] Silvio Ranise and Cesare Tinelli. The SMT-LIB Format: An Initial Proposal. In Proceedings
of the 1st Workshop on Pragmatics of Decision Procedures in Automated Reasoning (Miami
Beach, USA). 2003.

[6] Cesare Tinelli. http://www.smt-lib.org.

[7] http://en.wikipedia.org/wiki/Regular_expression.

70

http://www.smtcomp.org/2010
http://www.smt-lib.org

An index will be added in a future edition of the tutorial.

71

	Preface
	Version History
	Note
	Introduction
	The SMT-LIB endeavor
	Purpose and Content
	Mechanics

	Quick Start
	The SMT-LIB Language (v2)
	Some logical concepts
	Satisfiability and Validity
	Quantified formulas and SMT solvers
	Many-Sorted Logic
	Formulas and terms
	Abstract and concrete syntax

	Character set
	S-expressions
	Tokens
	Sort and Function Declarations
	Attributes
	Expressions
	Namespaces and Scopes
	Commands and command output
	Initialization: the set-logic command
	Termination: the exit command
	Defining new sorts: declare-sort and define-sort
	Defining new function symbols and constants: declare-fun and define-fun
	Asserting logical statements: the assert command
	Checking satisfiability: the check-sat command
	sat operations: get-value and get-assignment
	unsat operations: get-proof and get-unsat-core
	Adding scope: the push and pop commands
	Remembering what you have done: the get-assertions command
	Options
	Solver information
	The set-info command

	Logics and Theories
	Theories
	Definition of a Theory
	Core theory
	Ints theory
	Reals theory
	Reals_Ints theory
	ArraysEx theory
	Fixed_Size_BitVectors theory

	Logics
	Definition of a logic
	Boolean logics
	Logics with arithmetic
	Logics for difference arithmetic
	Logics with Bit-Vectors and Arrays

	SMT solvers
	Tools
	Tools associated with this tutorial
	The SMT-LIB validator
	The SMT-LIB adapters
	The SMT-LIB Java API
	The SMT Eclipse plug-in
	SMT validation test suite

	Tools from other providers

